.g(;‘




Today, start with a cool program






0J0J0101010

® 0 dna.txt — dna
dratxt .

False,True,False,False,True,False
True,True,False,True,True,False
True,True,False,True,True, True
False,True,False,True,True,False
False,True,False,False,True,False
True,True,False,True,True,True
False,False,True,False,False,False
False,False,True,False,True,False
True,False,False,True,False,False
10 False,True,False,True,True,False
11 True,False,False,True,False,False
12 True,False,True,True,False,False
13 False,True,False,False,True,False
14 False,False,True,True,False,False
15 True,True,False,False,True,True

16 True,False,True,True,False,False
17 True,True,True,True,True,True |

18 True,False,True,False,False,True
19 False,True,False,True,True,True

20 False,False,True,False,False,False
21 False,False,False,True,True,False
22 False,True,False,False,True,False
23 True,True,False,True,True,True

24 False,True,False,True,True,False
25 True,False,False,False,False,True
26 False,False,True,True,False,True
27 False,False,False,True,False,False
28 False,True,True,False,False,True
29 False,True,False,False,True,True
30 False,False,False,False,False,True
31 False,True,False,True,True,False
32 True,False,False,True,False,False
33 True,True,False,True,True,True

34 True,True,False,False,True,True

35 True,True,False,True,True,True

36 False,False,False,True,False,False

~"
6 observations per sample

LCOoONOWUL & WN W

100,000
samples

_— )




Discovered Pattern

These genes

p(Gs) = 0.6 don’t impact T

p(G,) =0.5
p(G,| Gs)=0.9

¢
@ O=% | @
\_/

p(T | G, and G,) =0.9




We ve goﬂen ahead of ourselves

SRR B Source: The He



Start at the beggining
., et

37 el BN e/ ‘
2 NN o 3 Source: The He



And vs Condition

F(AB\ Vs PN B







Set Operations Review

- Say E and F are subsets of S




Set Operations Review

- Say Eand F are events in S

Eventthatisin EorF
EUF

- S={1, 2, 3,4, 5 6} die roll outcome
- E={1, 2} F={2, 3} EUF={1,2, 3}




Set Operations Review

Say E and F are events in S

Eventthatisin Eand F
EnNnF or EF

S

- S={1, 2, 3,4, 5 6} die roll outcome
- E={1, 2} F={2, 3} EF={2}
« Note: mutually exclusive events means EF = &




Set Operations Review

- Say Eand F are events in S

Event that is not in E (called complement of E)
E® or ~E

- S={1, 2, 3,4, 5 6} die roll outcome
- E={1, 2} E®={3, 4,5, 6}




Which is the correct picture for E€ n F¢

S S
A C




Set Operations Review

- Say Eand F are events in S

DeMorgan’s Laws
(EUF)c=EcnFe° (EnF)c=EcuUFe°

S S




Core probability in two slides?






So Far

If calculating... If calculating...

4 /N

Law of \V

Definition
of Cond.
Prob.

Bayes’
Theorem

Total Prob

... you can use ... you can use /=28y
i ﬂ



Today

If calculating... If calculating...
DeMorgan’s

Mutually

Exclusive? Independent?,

(D

\
=

... you can use ... you can use




End Review
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DeMorgan’s

\/ Independe\nf

Mutually
Exclusive?

(D




Today

Mutually
Exclusive?

(D
./




Probability of “OR”



OR with Mutually Exclusive Events

If events are mutually exclusive, probability of OR is simple:

P(EUF) = P(E) + P(F)




OR with Mutually Exclusive Events

If events are mutually exclusive, probability of OR is simple:

74 11




OR with Many Mutually Exclusive Events

X3

P(XiUXoU - UX,) =




If events are mutually
exclusive probability of
OR is easy!




What about when they are not
Mutually exclusive?



OR without Mutually Exclusivity




OR without Mutually Exclusivity

8§ 14 3 19




More than two sets?









Inclusion Exclusion with Three Sets

P(FEUFUG)= P(E)+ P(F)




Inclusion Exclusion with Three Sets

P(EUFUG) = P(E) + P(F) + P(G)




Inclusion Exclusion with Three Sets

P(EUFUG) = P(E) + P(F) + P(G)
_P(EF)




Inclusion Exclusion with Three Sets

P(EUFUG) = P(E) + P(F) + P(G)
_P(EF) — P(EG)




Inclusion Exclusion with Three Sets

P(EUFUG) = P(E) + P(F) + P(G)
—P(EF) — P(EG) — P(FG)




Inclusion Exclusion with Three Sefts
P(EUFUG)= P(E)+ P(F) + P(G)
—~P(EF) - P(EG) — P(FG)
E +P(EFG)




General Inclusion Exclusion

P(E{UE,U---UE,) =) (-1)"'Y,

r=1
* Where Y, 1s the sum, for all combinations of » events, of the
probability of the union those events.

Y, = Sum of all events on their own Z P(E;)

Y,= Sum of all pairs of events Z P(E; N Ej)
Qi stij
Y, = Sum of all triples of events Z P(E;NE;NEy)

1,3,k staF g jF kR iFEk
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Mutually
Exclusive?
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./
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Mutually

\/ Independe\nf

(1

Exclusive?



Today

Mutually
Exclusive?

o &

\

Independe\nf




Probability of “AND”






Independence

Two events A and B are called independent if:

P(AB) = P(A)P(B)

Otherwise, they are called dependent events




If events are independent
probability of AND is easy!

*You will need to use this “trick” with high probability



Intuition through proofs

Let A and B be independent

Definition of
P(A|B) P(AB) conditional probability
" P(B)
Since A and B are
— P(A)P(B) |rlicndeperr:derlJr r
P(B)
Taking the bus t
- P(A) Icnagncel ci’rYS O

Knowing that event B happened, doesnt change
our belief that A will happen.




Dice, Our Misunderstood Friends

- Roll two 6-sided dice, yielding values D, and D,
- Let E be event: D, =1
- Let F be event: D, =1

- Whatis P(E), P(F), and P(EF)?
- P(E)=1/6, P(F)=1/6, P(EF)=1/36
- P(EF)=P(E)P(F) - E and F independent

- LetGbeevent:D,+D,=5 {1,4),(23),(3,2), 4 1)
- Whatis P(E), P(G), and P(EG)?

« P(E)=1/6, P(G)=4/36=1/9, P(EG)=1/36

» P(EG)=#P(E)P(G) =~ E and G dependent




What does independence look like?



Independence?

) Independence Definition 1:
P(AB) = P(A)P(B)

0
A Al B

_X_

SI 181 1S




Independence

R R Independence Definition 1:

P(AB) = P(A)P(B)

AB AB| _ || |B|
A S| sl IS
Independence Definition 2:
1 P(AIB) = P(A)
B 14B| _ 4]
Bl |5




Independence

This ratio, P(A)... ... 1s the same as this one, P(A|B)
N\ 4 3\
A AB
| [\ y
B
Y, \ J




Independence

R R Independence Definition 1:

P(AB) = P(A)P(B)

AB AB| _ || |B|
A S| sl IS
Independence Definition 2:
1 P(AIB) = P(A)
B 14B| _ 4]
Bl |5




More Intuition through proofs:



Independence

Given independent events A and B, prove that A
and BC€ are independent

We want to show that P(ABS) = P(A)P(BC)

_ P(AB) By Total Law of Prob.
(

A)P(B) By independence
11— P(B)] Factoring
P(BY) Since P(B) + P(BC) = 1

So if Aand B are independent A and B€ are
also independent




Generalization




Generalized Independence

. General definition of Independence:

Events E, , E,, ..., E, are independent if for

every subset with r elements (where r< n) it
holds that:

P(E,E,E,...E.)=P(E,)P(E,)P(E,)..P(E.)

- Example: outcomes of n separate flips of a coin
are all independent of one another

= Each flip in this case is called a “trial” of the experiment




Math > Intuition




Two Dice

Roll two 6-sided dice, yielding values D, and D,
- Let E be event: D, =1

= LetF be event: D, =6

« Are E and F independent? Yes!

Let Gbeevent: D, +D,=7

« Are E and G independent? Yes!
- P(E)=1/6, P(G)=1/6, P(E G)=1/36 TJroll (1, 6)]
« Are F and G independent? Yes!

- P(F)=1/6, P(G)=1/6, P(F G)=1/36 [roll (1, 6)]
» Are E, F and G independent? No!

« P(EFG) =1/36 = 1/216 = (1/6)(1/6)(1/6)




New Ability




Today

DeMorgan’s

\/ Independe\nf

Mutually
Exclusive?

(D




Today

DeMorgan’s

Independe\nf

Mutually
Exclusive?

o &

\
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Use the two properties
(mutual exclusion and
independence)




Sending a Message Through Network

Consider the following parallel network:

P1@

Po =
A @ )IB

P, =

il

= nindependent routers, each with probability p; of
functioning (where 1 <i<n)

« E = functional path from A to B exists. What is P(E)?




Sending a Message Through Network

Consider the following parallel network:

P1@

Po =
A @ >IB

P, =

il

= nindependent routers, each with probability p; of
functioning (where 1 <i<n)

« E = functional path from A to B exists. What is P(E)?




Sending a Message Through Network

Consider the following parallel network:

P1@

Py =
A =il B

P, =
il

= nindependent routers, each with probability p; of
functioning (where 1 <i<n)

« E = functional path from A to B exists. What is P(E)?

Solution:
- P(E) =1-P(all routers fail)
=1-(1-p)(1=py)-..(1-p,)

n

= I_H(l_pi)




Coin Flips

. Say a coin comes up heads with probability p
« Each coin flip is an independent trial

P(n heads on n coin flips) = p"
P(n tails on n coin flips) = (1 — p)"

P(first k heads, then n — k tails) =p*“(1- p)"™

P(exactly k heads on n coin flips) =7




Explain...

n
P(exactly k heads on n coin flips)? (kjpk(l _ p)"—k

Think of the flips as ordered:

Ordering 1: T, H, H, T, T, T.... The coin flips are
Ordering 2: H, T H, T, T, T.... independent!
And so on... P(E.)=pk(1—p)”‘k

Let's make each ordering with k heads an event... F;

P(exactly k heads on n coin flips) = P(any one of the events)
P(exactly k heads on n coin flips) = P(F, or F, or F5...)

Those events are mutually exclusive!




Hash Tables

m strings are hashed (unequally) into a hash
table with n buckets

» Each string hashed is an independent trial, with
probability p; of getting hashed to bucket /

« E = at least one string hashed to first bucket
« Whatis P(E)?
Solution

1o the white board




Hash Tables

m strings are hashed (unequally) into a hash
table with n buckets

» Each string hashed is an independent trial, with
probability p; of getting hashed to bucket /

« E = at least one string hashed to first bucket
« Whatis P(E)?
Solution

1o the white board




Yet More Hash Tables

- m strings are hashed (unequally) into a hash table
with n buckets

» Each string hashed is an independent trial, with
probability p; of getting hashed to bucket /

« E = Atleast 1 of buckets 1 to k has = 1 string hashed to it
Solution

- F, = at least one string hashed into /-th bucket
- P(E) =P(F,uF,u...UF)=1-P((F,uF,u...uUF,)%)

=1-P(F,“F,°...F,%) (DeMorgan’ s Law)
- P(F° F,°...F°) = P(no strings hashed to buckets 1 to k)
=(1=p1=p2— ... — P"

» PE) =1-(1-py=pa2—-..— p)"



No, Really, More Hash Tables

- m strings are hashed (unequally) into a hash table
with n buckets

» Each string hashed is an independent trial, with
probability p; of getting hashed to bucket /

« E = Each of buckets 1 to k has = 1 string hashed to it




No, Really, More Hash Tables

THIS IS FINE.




No, Really, More Hash Tables

- m strings are hashed (unequally) into a hash table
with n buckets

» Each string hashed is an independent trial, with
probability p; of getting hashed to bucket /

« E = Each of buckets 1 to k has = 1 string hashed to it

Solution

- F,; = at least one string hashed into /-th bucket

- PE) =P(F,F,...F,)=1-P((F,F,...F))°)
=1-P(F,UF,°0U...uUF°) (DeMorgan’ s Law)

=1—P[0Ej 1— Z( D" P(F

l]< <l

where P(F°F °..F,") = (l—pl.1 ~-p, ——D; )"




Phew!



Now two great tastes...



NETELIX



Nefiflix and Learn

What is the probability
that a user will watch
Life is Beautiful?

P(E)

P(E) = 10,234,231 /50,923,123 = 0.20




Neiflix and Learn

ALBREY TAUTOU T Marme Kassovnz

What is the probability
that a user will watch
Life is Beautiful, given
they watched Amelie?

P(E|F)

P(EF)  #people who watched both

P(E\F) = =
(E]F) P(F) #people who watched F

P(E|F)=0.42




Conditioned on liking a set of movies?



Neiflix and Learn

Each event corresponds to liking a particular movie

NAIROB! HALF LIFE

fﬂﬂv -T ' 5'-
& |

e




Is E, independent of E,,E,,E;?



Neiflix and Learn

Is E, independent of E,,E,,E;?

NAIROB! HALF LIFE

Yu\"‘ A

e




Neiflix and Learn

Is E, independent of E,,E,,E;?

NAIROB! HALF LIFE




Neiflix and Learn

- What is the probability that a user watched four
particular movies?

« There are 13,000 titles on Netflix

« The user watches 30 random titles

« E = movies watched include the given four.

Solution:

Watch those four Choose 24 movies

not in the set
4) (12996 &

N
P(E) = <4(130§§) ) =10""

30

A

Choose 30 movies
from netflix




Neiflix and Learn

ALBREY TAUI0E T Mo ks

NAIROBI HALF LIFE

A"ﬂw } ,

: : 7
Ve V& Potain ‘
o fom o JEANPERRE JONET .




Neiflix and Learn

K;

Like foreign emotional comedies

NAIROBI HALF LIFE

LIFE 5 » ~ T

BEAUTILL R

3\7:" i




Neiflix and Learn

K;

Like foreign emotional comedies

NAIROBI HALF LIFE

LIFE 5 » ~ T

BEAUTILL R

3\7:" i




Neiflix and Learn

K,

Like foreign emotional comedies

pd

/

g 2

a

Ll FE i B W :G-A e
idiots

BEAUTIRUL

Do

NAIROBI HALF LIFE

3

P -

Ly




Neiflix and Learn

K,

Like foreign emotional comedies

NAIROBI HALF LIFE

=
LIH;_l\ e -

BrAUTIL s "it ' L Fobl Yis 7‘"{? ,
| 7oAmeLic . Som'ss

Ly

Assume E,, E,, E; and E, are conditionally independent given K 7




Conditional independence is a
practical, real world way of
decomposing hard probability
guestions.



Conditional Independence

If E and F are
dependent,

that does not mean E and
F will be dependent
when another event
happens.




Conditional Dependence

If E and F are
independent,

that does not mean E and
F will be independent
when another event
happens.




Big Deal

“Exploiting conditional independence to
generate fast probabilistic computations is one
of the main contributions CS has made to
probability theory”

-Judea Pearl wins 2011 Turing Award, “For
fundamental contributions to artificial intelligence through
the development of a calculus for probabilistic and causal
reasoning”




AT e ¢ < Source: The He






Discovered Pattern

'Piech-2:dna piech$ python findStructure.py
size data = 100000

p(Gl) = 0.500
p(G2) = 0.545
p(G3) = 0.299
p(G4) = 0.701
p(G5) = 0.600
p(T) = 0.390

p(T and G1) = 0.291 , P(T)p(G1)

[
) ©
)
» O
) O

p(T and G3) a , P(T)p(G3)
p(T and G4) . , P(T)p(G4)
DLl anad 55"‘
T is independent of G3
T is independent of G4
G1 is independent of G2
Gl is independent of G5
T 1is independent of G5 | G2




Mutual exclusion
And
Independence

Are two properties of
events that make it easy
to calculate probabilities.




