

A close-up photograph of the Statue of Liberty's head and torch against a clear blue sky. A blue rectangular box is overlaid on the lower half of the image, containing the word "Independence".

Independence



Today, start with a cool program



$G_1$

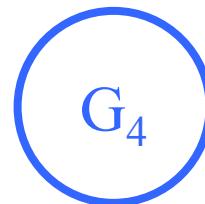
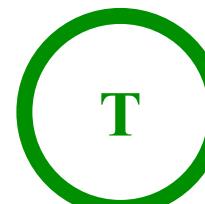
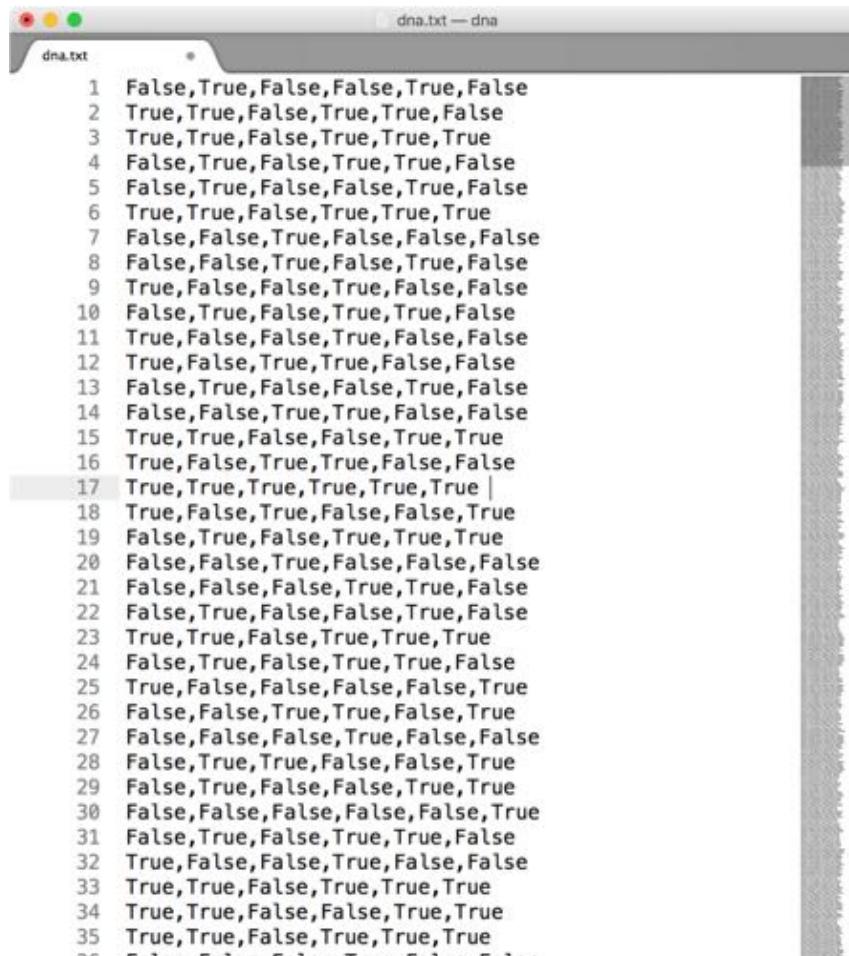
$G_2$

$G_3$

$G_4$

$G_5$

T



A screenshot of a Mac OS X window titled "dna.txt" in a "Text" application. The window displays a list of 100,000 samples, each consisting of 6 observations. The observations are represented by either "True" or "False" values. The list starts with sample 1 and ends with sample 36. A blue curly brace at the bottom of the list indicates that each row represents a sample with 6 observations.

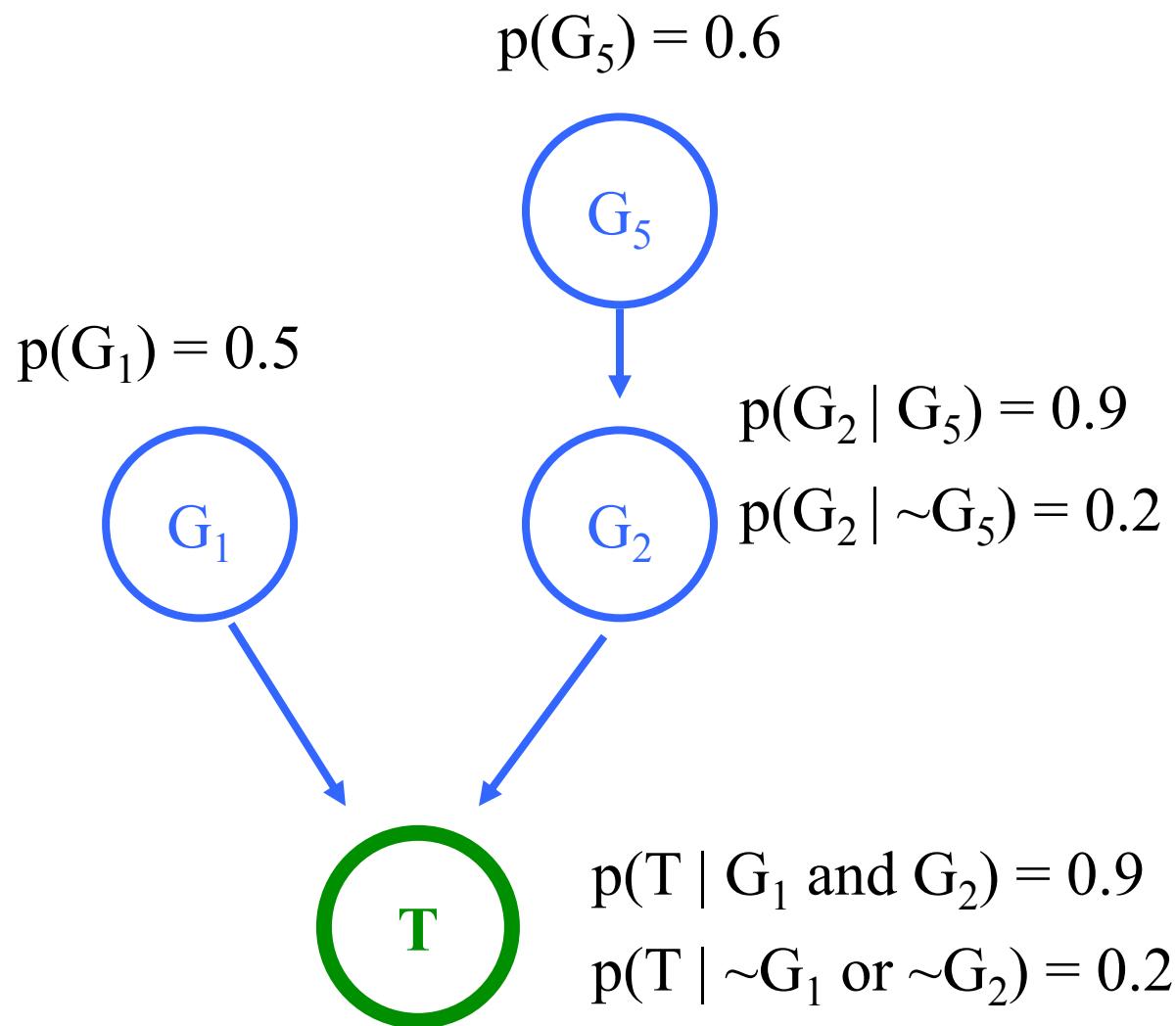
```
1 False,True,False,False,True,False
2 True,True,False,True,True,False
3 True,True,False,True,True,True
4 False,True,False,True,True,False
5 False,True,False,False,True,False
6 True,True,False,True,True,True
7 False,False,True,False,False,False
8 False,False,True,False,True,False
9 True,False,False,True,False,False
10 False,True,False,True,True,False
11 True,False,False,True,False,False
12 True,False,True,True,False,False
13 False,True,False,False,True,False
14 False,False,True,True,False,False
15 True,True,False,False,True,True
16 True,False,True,True,False,False
17 True,True,True,True,True,True
18 True,False,True,False,False,True
19 False,True,False,True,True,True
20 False,False,True,False,False,False
21 False,False,False,True,True,False
22 False,True,False,False,True,False
23 True,True,False,True,True,True
24 False,True,False,True,True,False
25 True,False,False,False,False,True
26 False,False,True,True,False,True
27 False,False,False,True,False,False
28 False,True,True,False,False,True
29 False,True,False,False,True,True
30 False,False,False,False,False,True
31 False,True,False,True,True,False
32 True,False,False,True,False,False
33 True,True,False,True,True,True
34 True,True,False,False,True,True
35 True,True,False,True,True,True
36 False,False,False,True,False,False
```

6 observations per sample

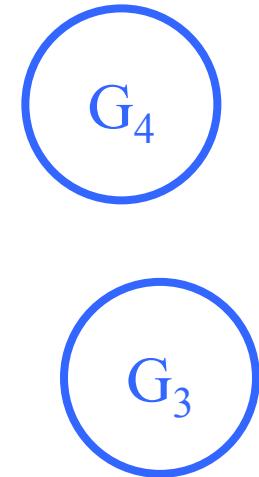
100,000  
samples



# Discovered Pattern



These genes  
don't impact T



# We've gotten ahead of ourselves



Source: The Hobbit

# Start at the beginning



Source: The Hobbit

# And vs Condition

$P(AB)$  vs  $P(A|B)$

$$P(AB) = P(A|B)P(B)$$

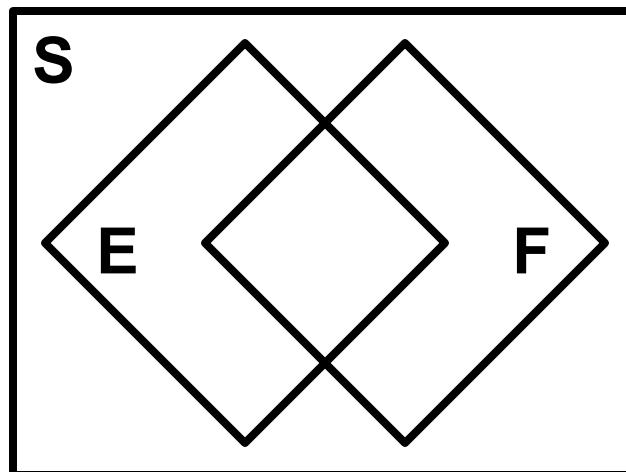


# Sets Review



# Set Operations Review

- Say  $E$  and  $F$  are subsets of  $S$

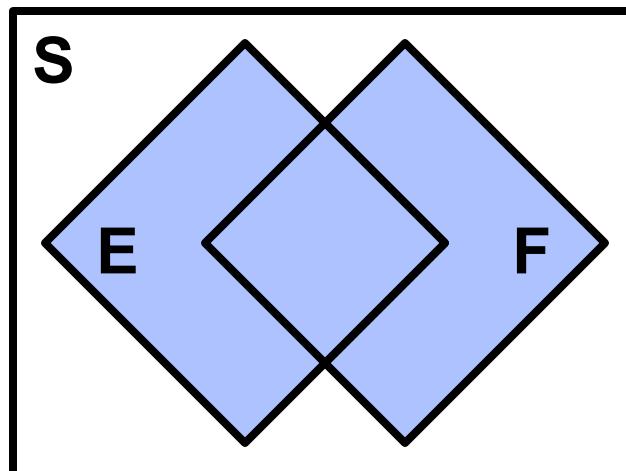


# Set Operations Review

- Say  $E$  and  $F$  are events in  $S$

Event that is in  $E$  or  $F$

$$E \cup F$$



- $S = \{1, 2, 3, 4, 5, 6\}$  die roll outcome
- $E = \{1, 2\}$        $F = \{2, 3\}$        $E \cup F = \{1, 2, 3\}$

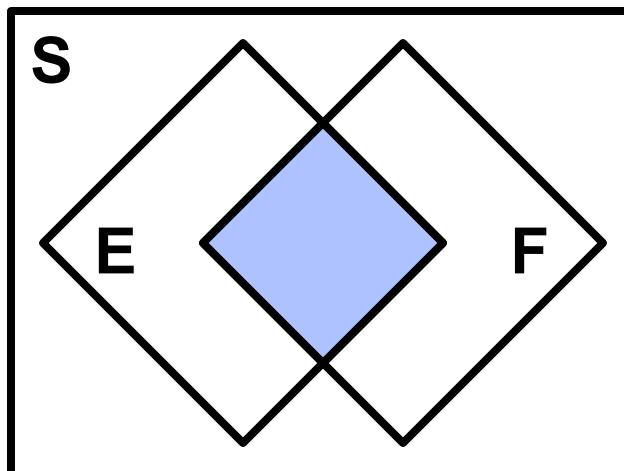


# Set Operations Review

- Say  $E$  and  $F$  are events in  $S$

Event that is in  $E$  and  $F$

$$E \cap F \text{ or } EF$$



- $S = \{1, 2, 3, 4, 5, 6\}$  die roll outcome
- $E = \{1, 2\}$        $F = \{2, 3\}$        $E F = \{2\}$
- **Note:** mutually exclusive events means  $E F = \emptyset$

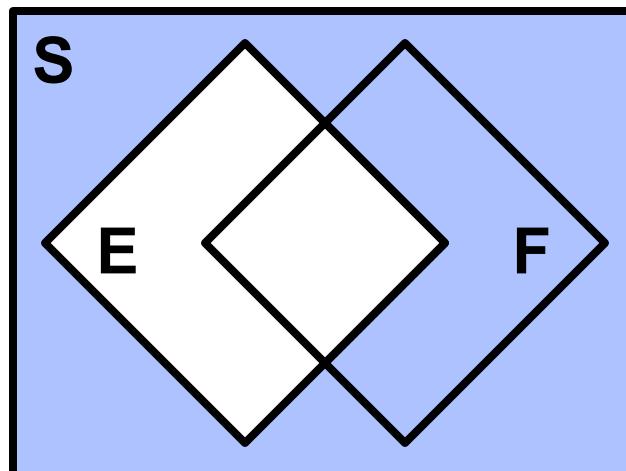


# Set Operations Review

- Say  $E$  and  $F$  are events in  $S$

Event that is not in  $E$  (called complement of  $E$ )

$$E^c \text{ or } \sim E$$

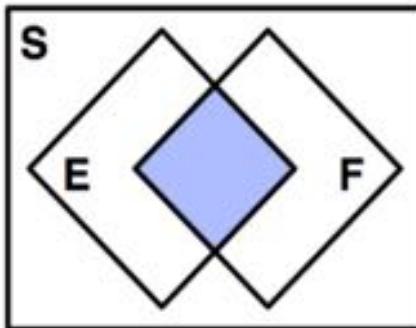


- $S = \{1, 2, 3, 4, 5, 6\}$  die roll outcome
- $E = \{1, 2\}$   $E^c = \{3, 4, 5, 6\}$

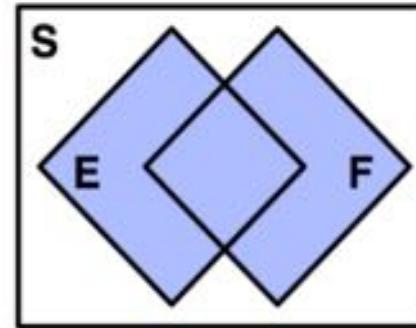


Which is the correct picture for  $E^c \cap F^c$

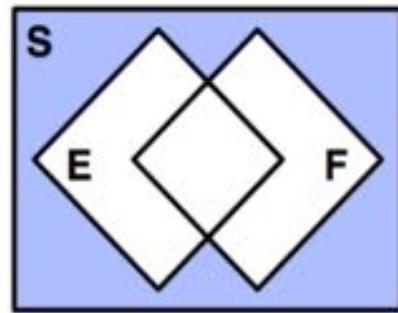
A



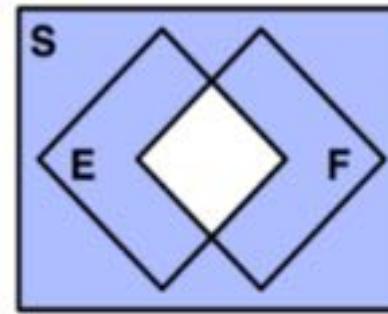
C



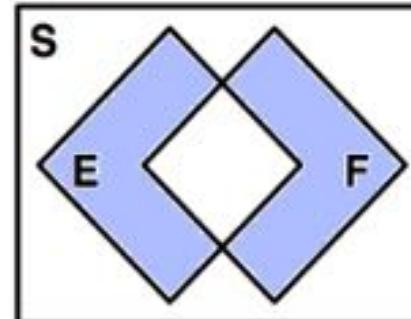
B



D



E

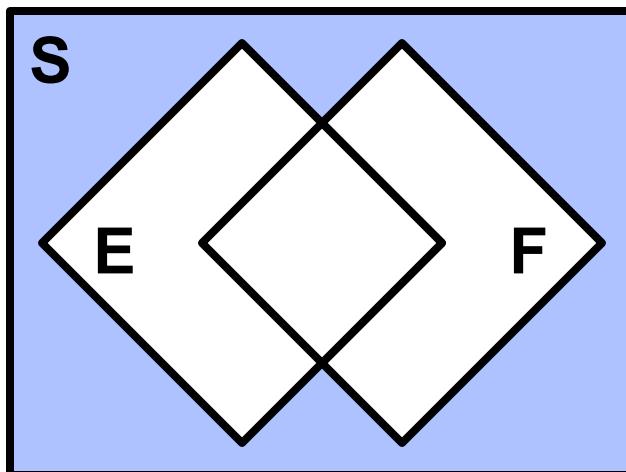


# Set Operations Review

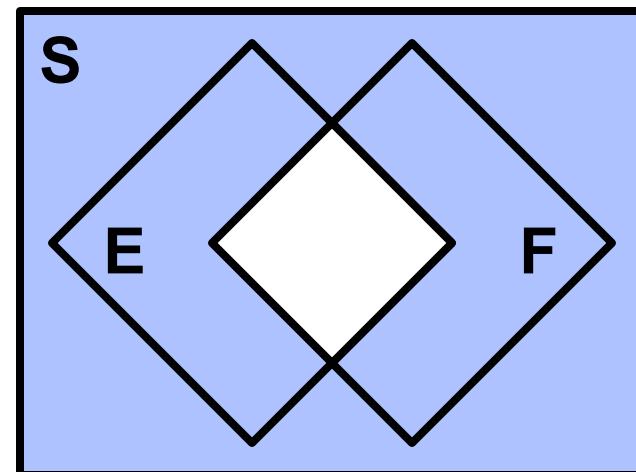
- Say  $E$  and  $F$  are events in  $S$

DeMorgan's Laws

$$(E \cup F)^c = E^c \cap F^c$$



$$(E \cap F)^c = E^c \cup F^c$$

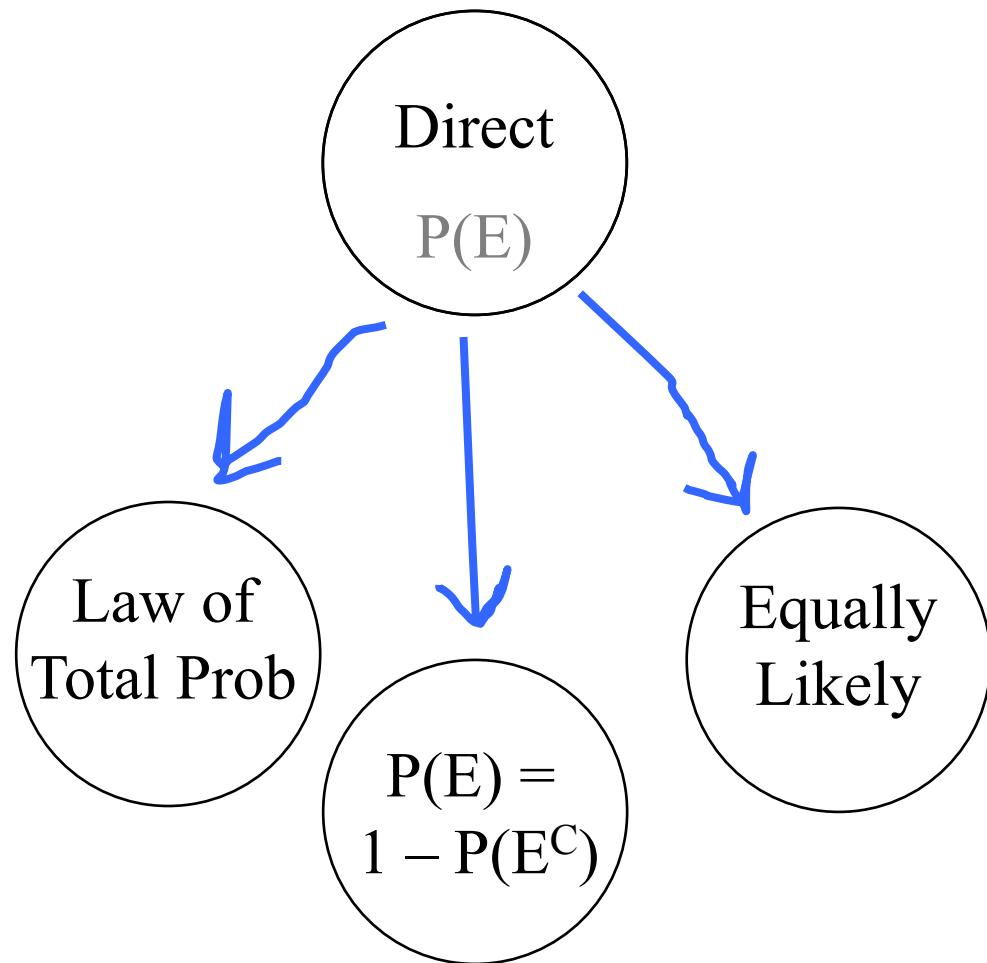


Core probability in two slides?



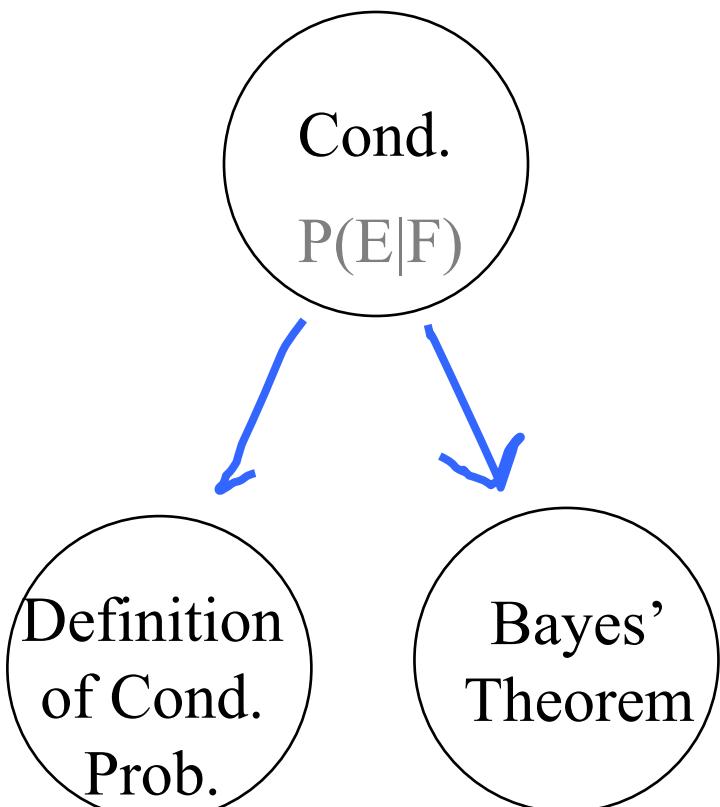
# So Far

If calculating...



... you can use

If calculating...

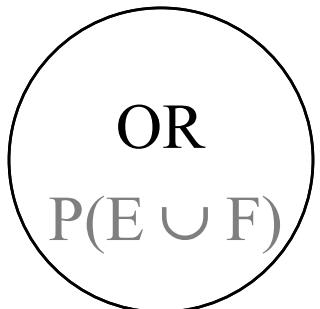


... you can use



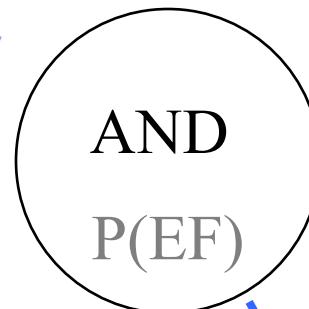
# Today

If calculating...

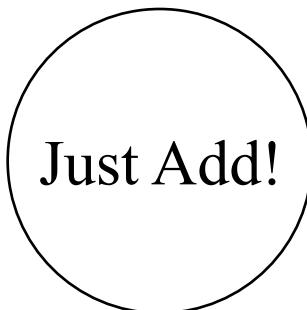


DeMorgan's

If calculating...



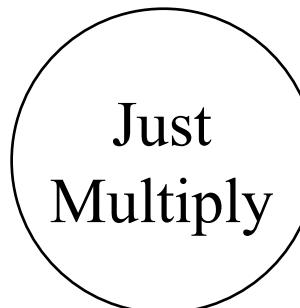
*Mutually Exclusive?*



... you can use



*Independent?*

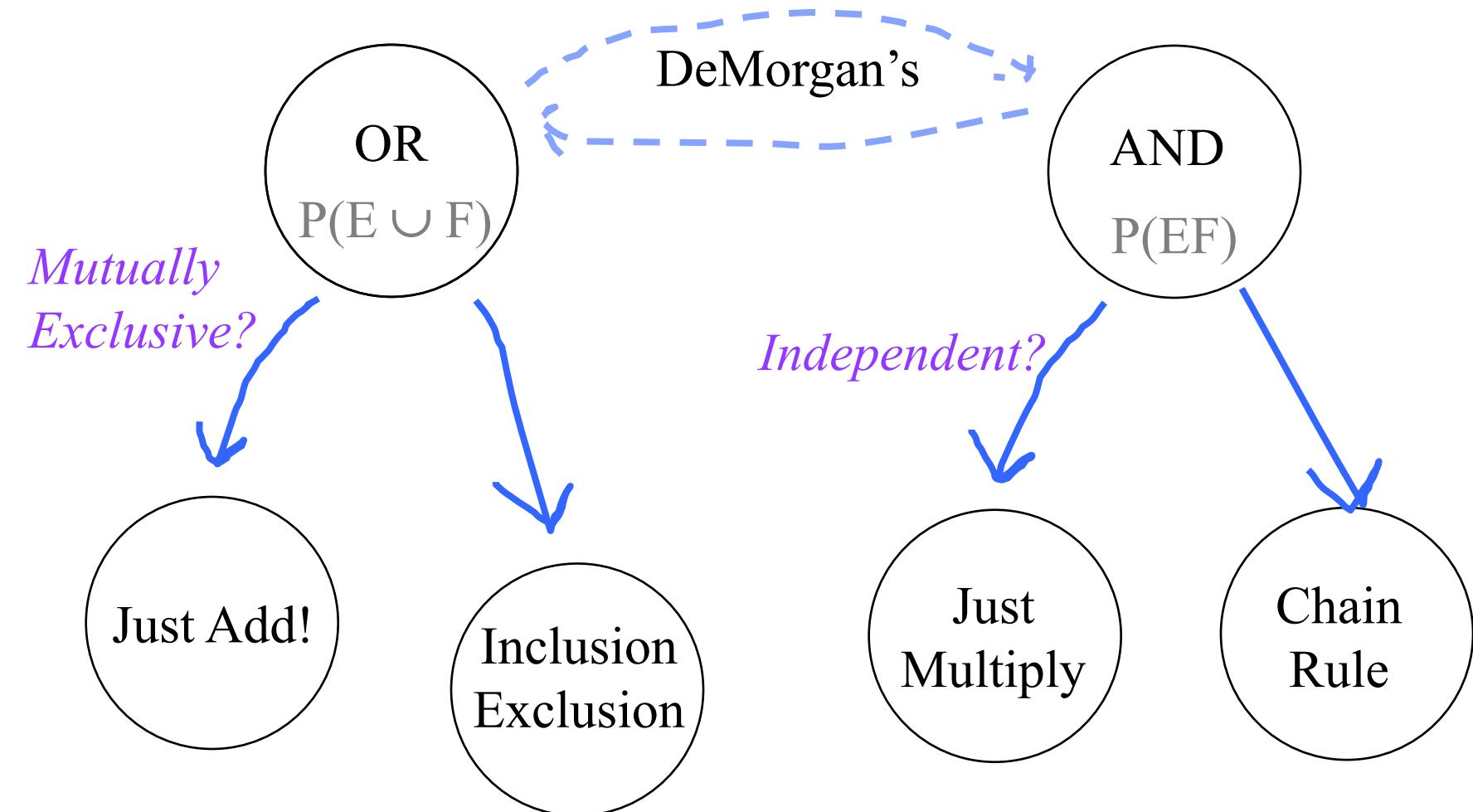


... you can use

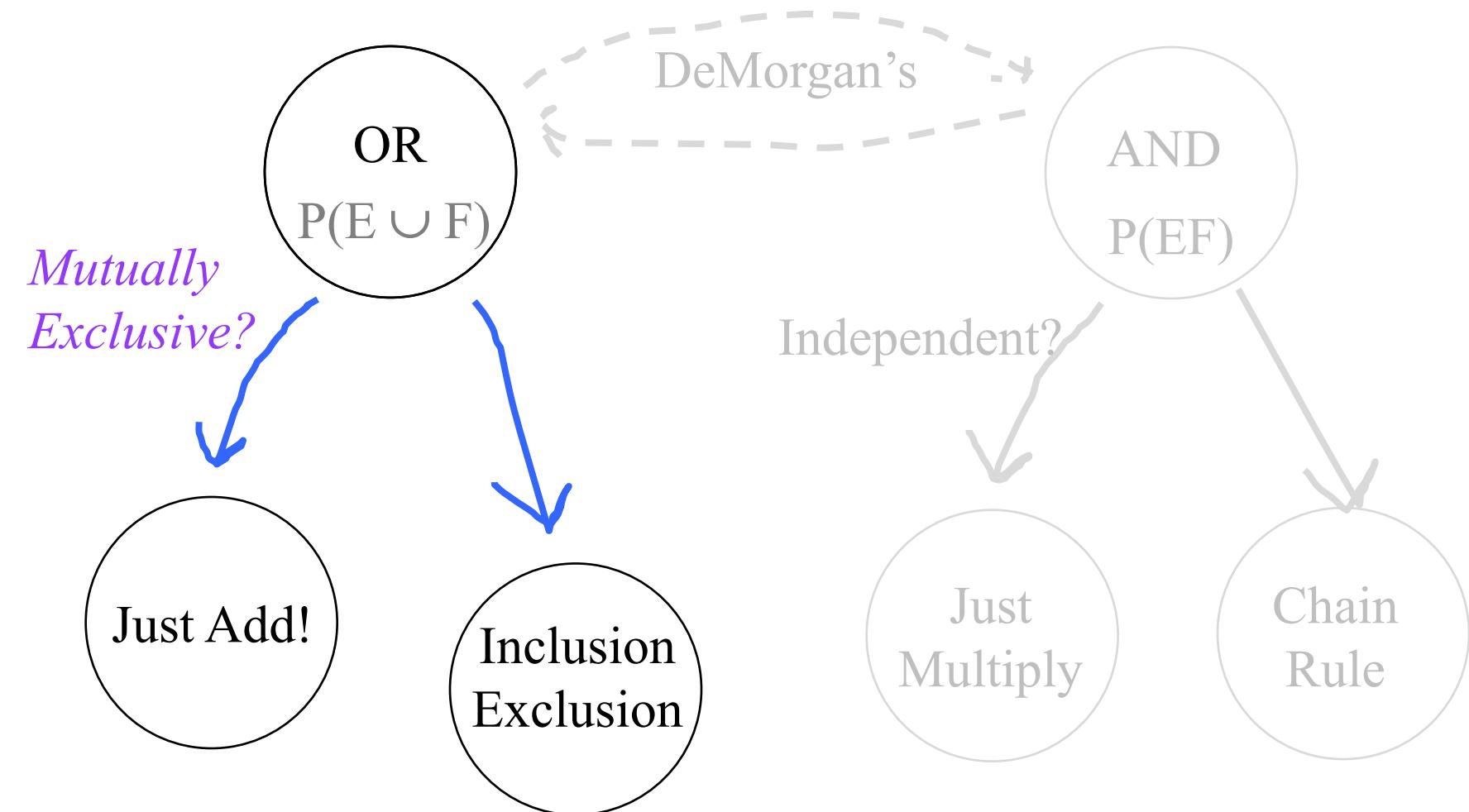


End Review

# Today

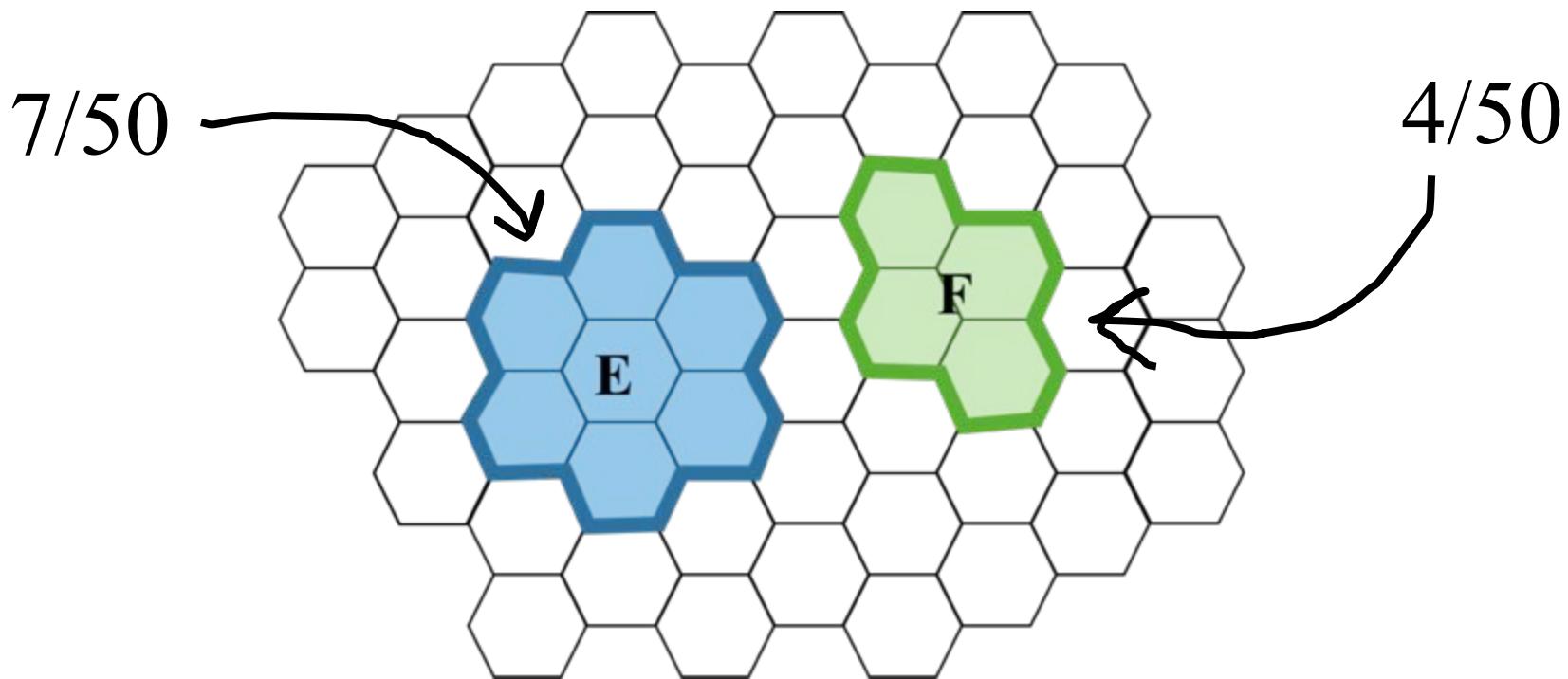


# Today



# Probability of “OR”

# OR with Mutually Exclusive Events

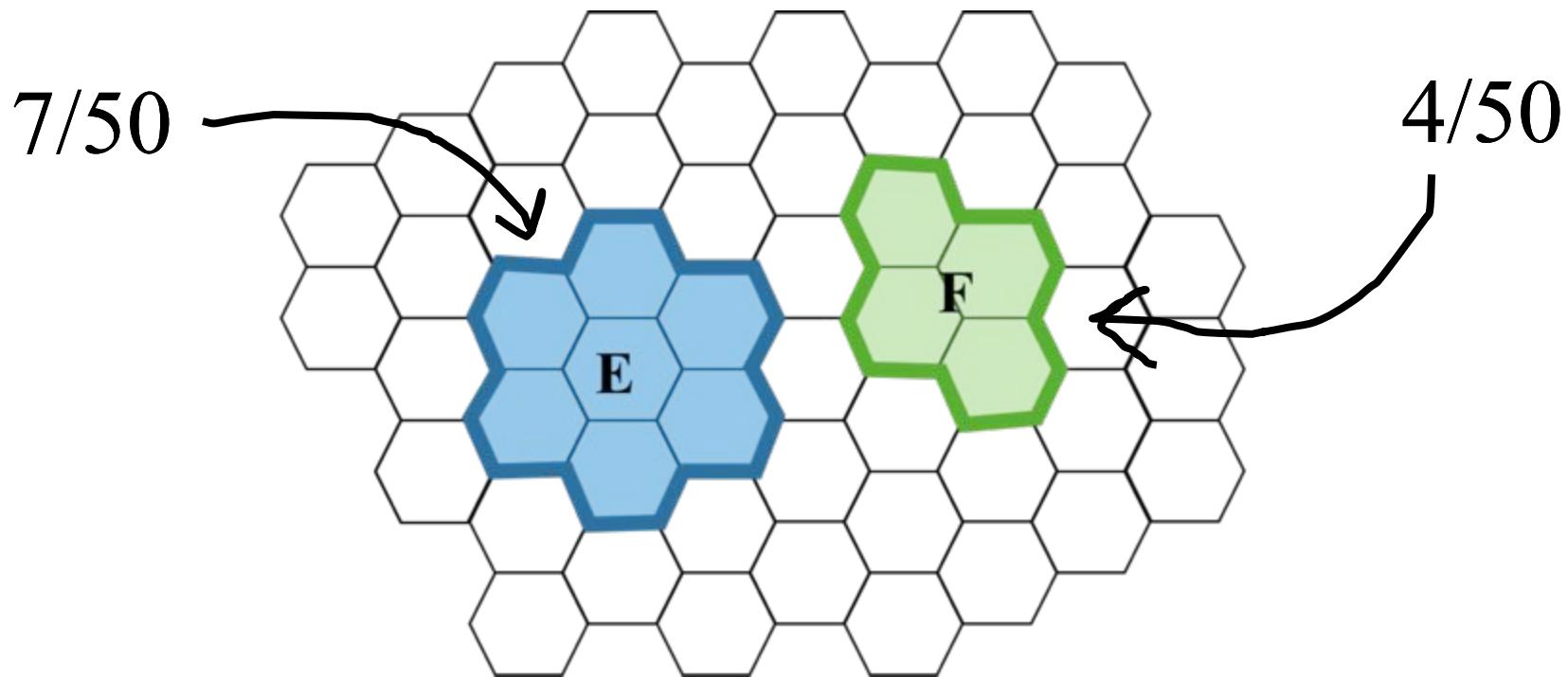


If events are mutually exclusive, probability of OR is simple:

$$P(E \cup F) = P(E) + P(F)$$



# OR with Mutually Exclusive Events

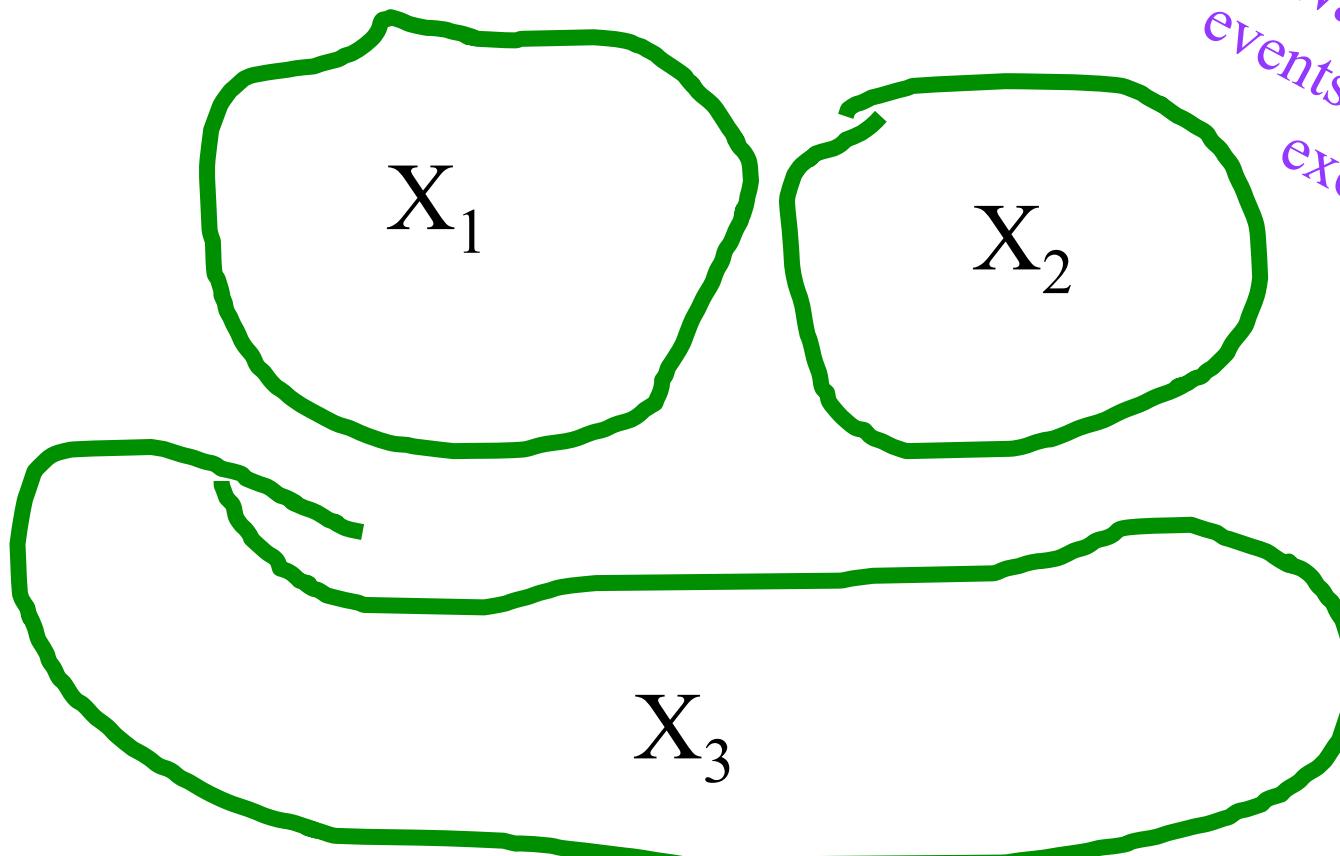


If events are mutually exclusive, probability of OR is simple:

$$P(E \cup F) = \frac{7}{50} + \frac{4}{50} = \frac{11}{50}$$



# OR with Many Mutually Exclusive Events



$$P(X_1 \cup X_2 \cup \dots \cup X_n) = \sum_{i=1}^n P(X_i)$$



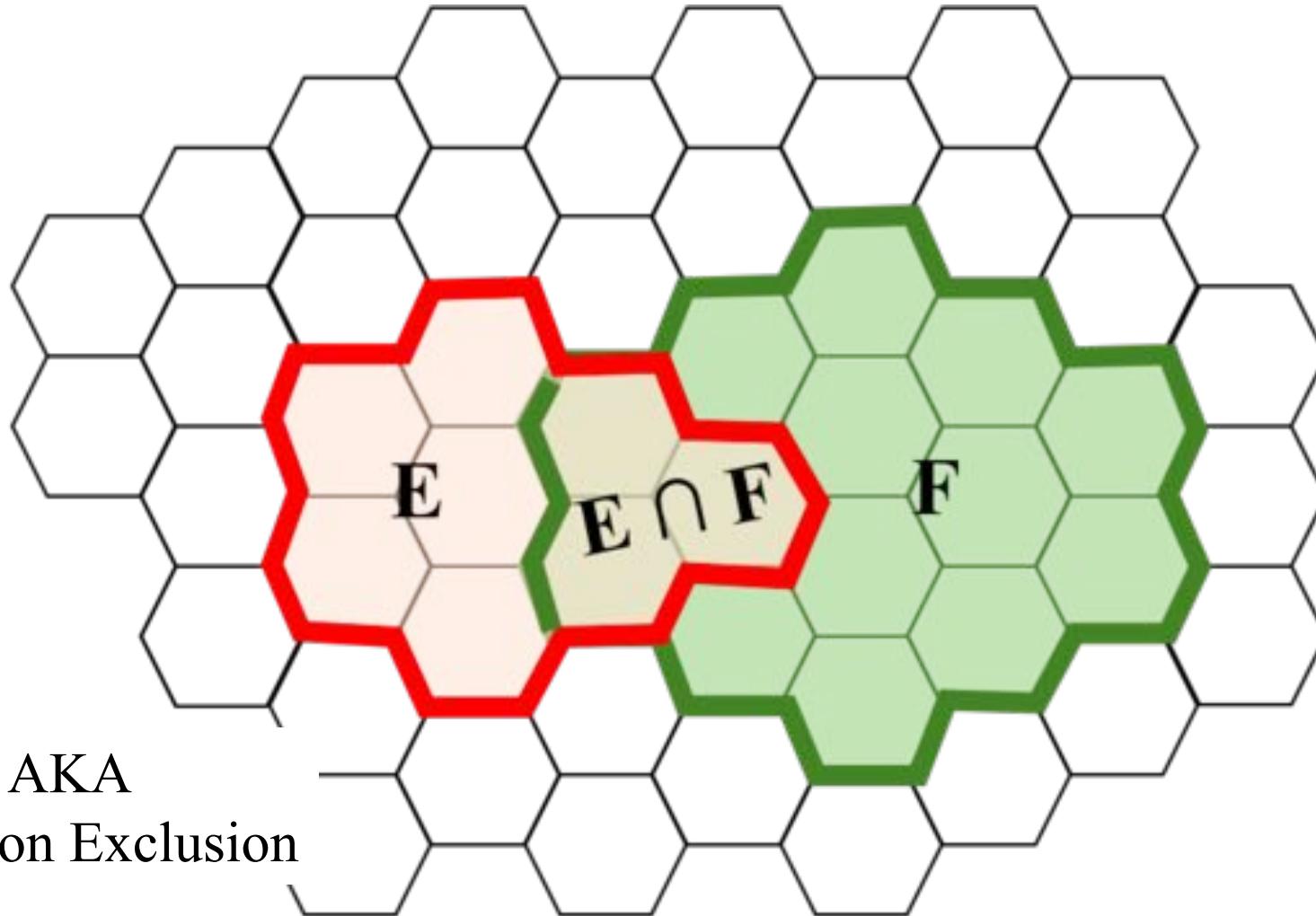


If events are *mutually exclusive* probability of OR is easy!



What about when they are not  
*Mutually exclusive?*

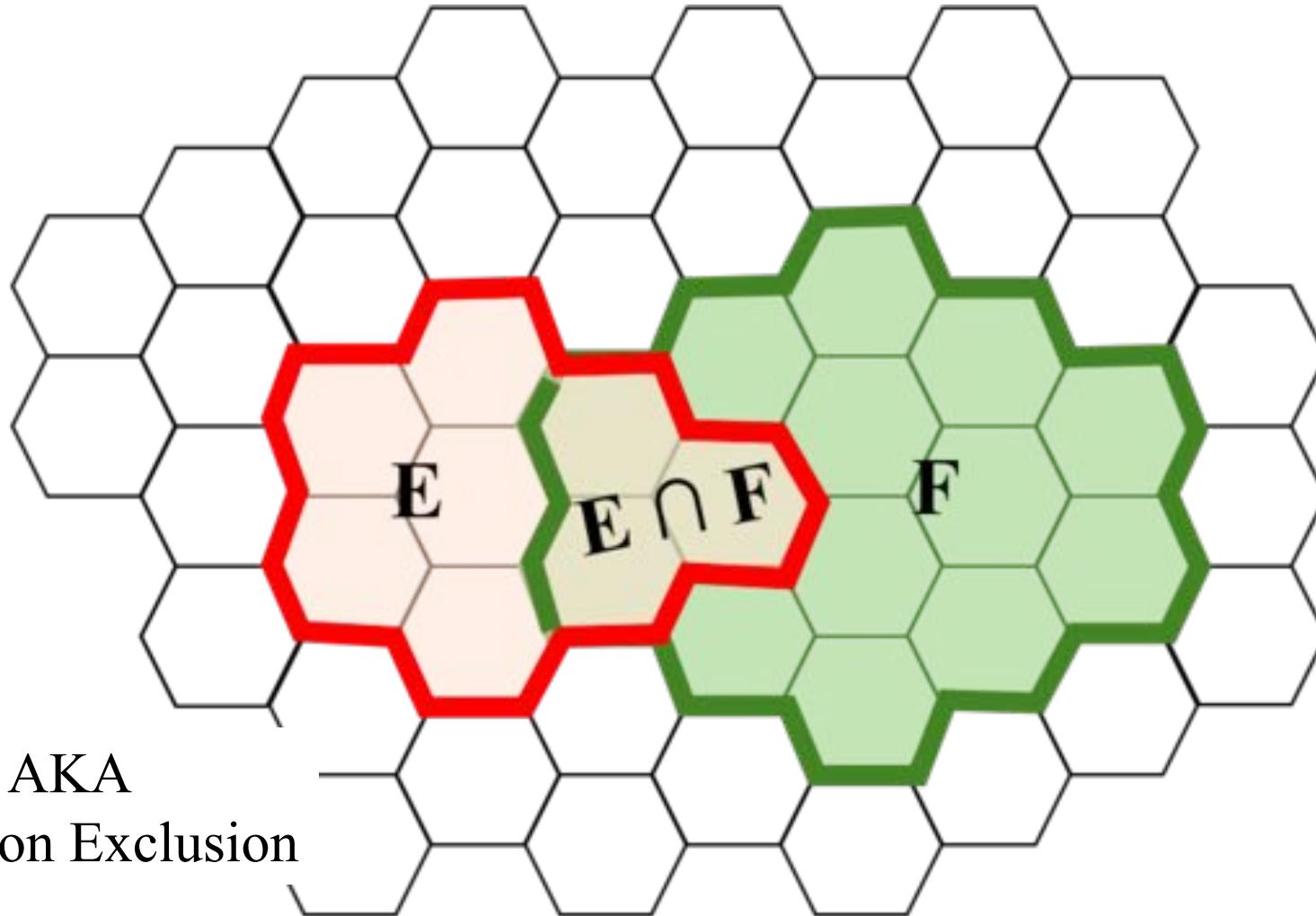
# OR without Mutually Exclusivity



$$P(E \cup F) = P(E) + P(F) - P(E \cap F)$$



# OR without Mutually Exclusivity



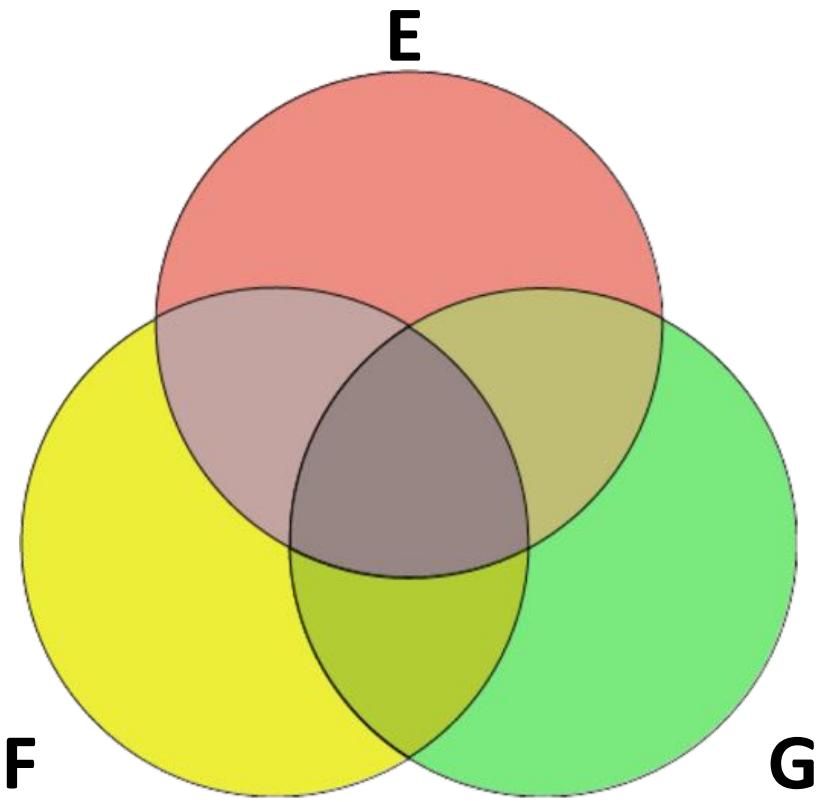
$$P(E \cup F) = \frac{8}{50} + \frac{14}{50} - \frac{3}{50} = \frac{19}{50}$$



More than two sets?

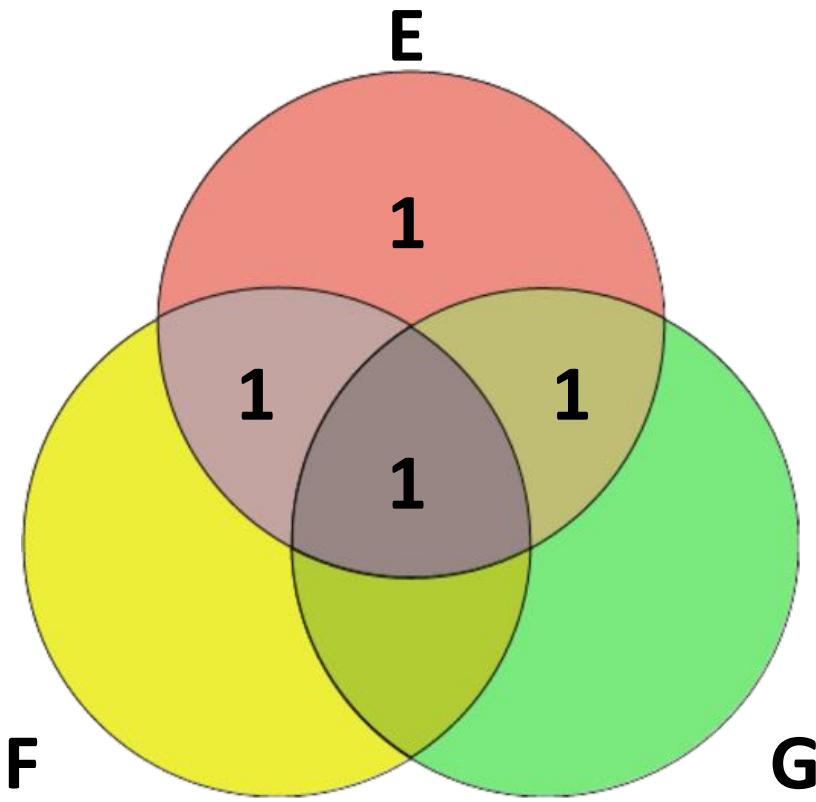
# Inclusion Exclusion with Three Sets

$$P(E \cup F \cup G) =$$



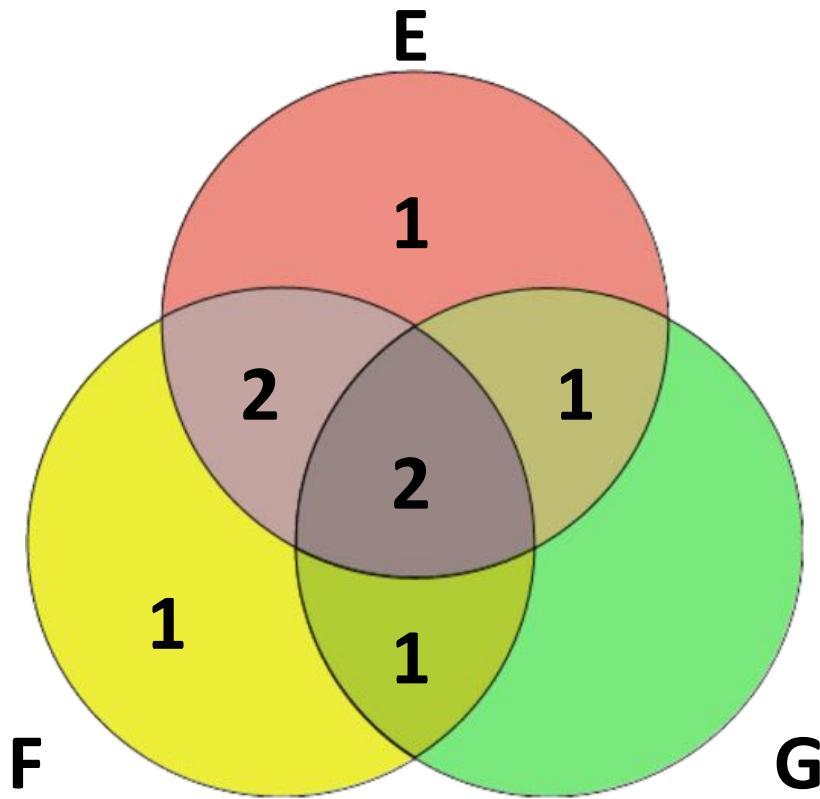
# Inclusion Exclusion with Three Sets

$$P(E \cup F \cup G) = P(E)$$



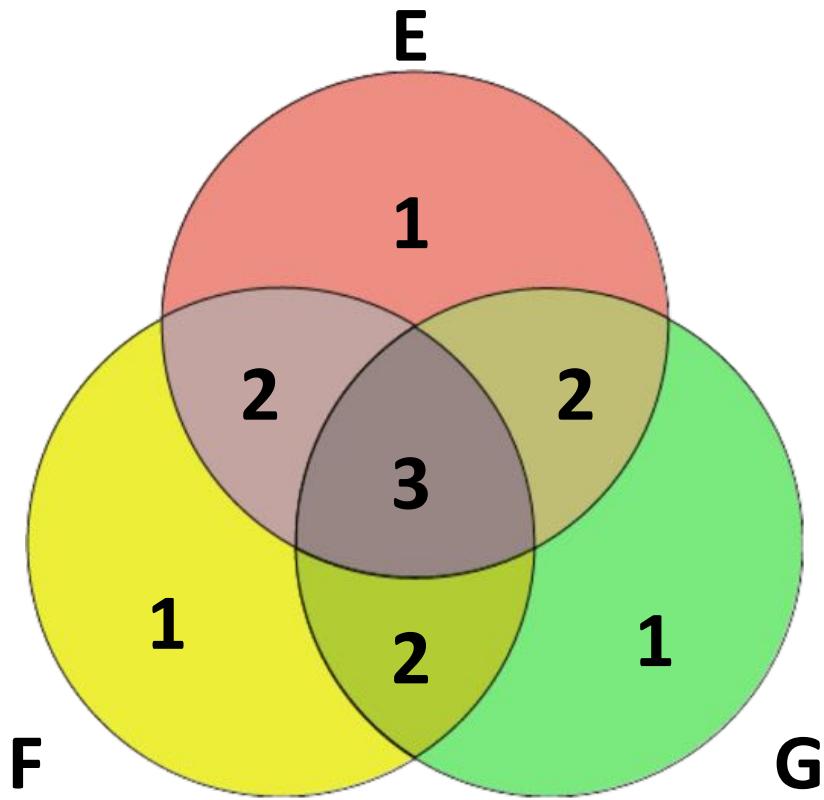
# Inclusion Exclusion with Three Sets

$$P(E \cup F \cup G) = P(E) + P(F) + P(G) - P(E \cap F) - P(E \cap G) - P(F \cap G) + P(E \cap F \cap G)$$



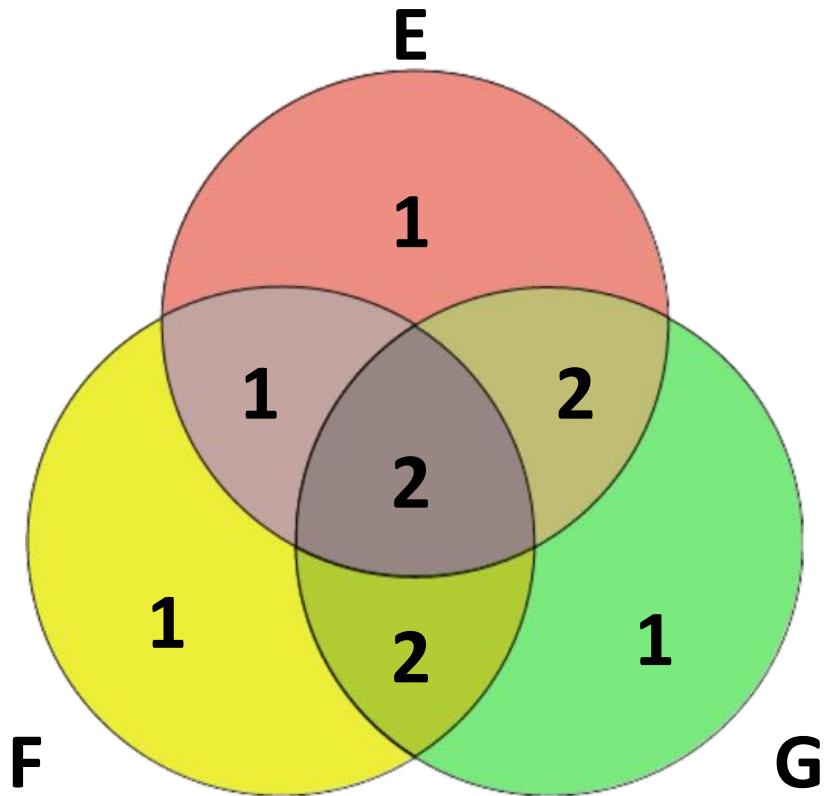
# Inclusion Exclusion with Three Sets

$$P(E \cup F \cup G) = P(E) + P(F) + P(G)$$



# Inclusion Exclusion with Three Sets

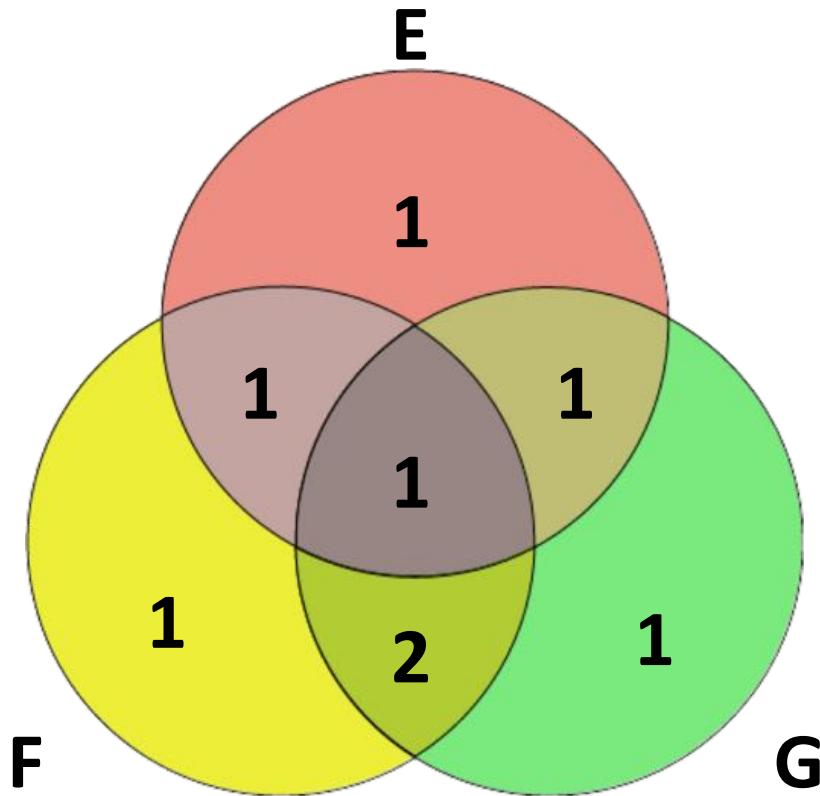
$$P(E \cup F \cup G) = P(E) + P(F) + P(G) - P(EF) - P(EG) - P(FG) + P(EFG)$$



# Inclusion Exclusion with Three Sets

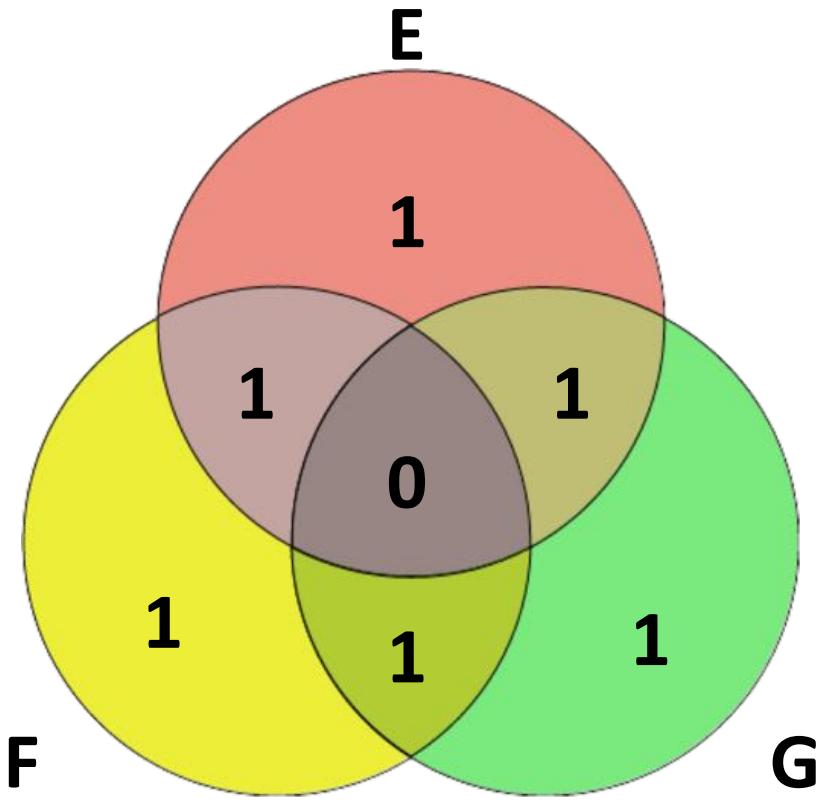
$$P(E \cup F \cup G) = P(E) + P(F) + P(G)$$

$$-P(EF) - P(EG)$$



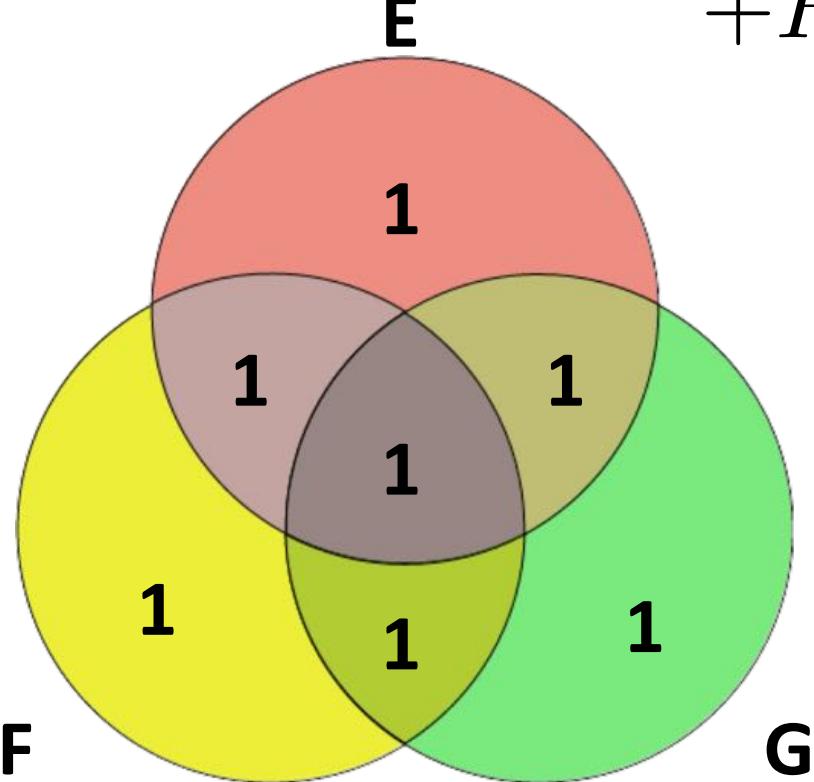
# Inclusion Exclusion with Three Sets

$$P(E \cup F \cup G) = P(E) + P(F) + P(G) - P(EF) - P(EG) - P(FG)$$



# Inclusion Exclusion with Three Sets

$$\begin{aligned} P(E \cup F \cup G) &= P(E) + P(F) + P(G) \\ &\quad - P(EF) - P(EG) - P(FG) \\ &\quad + P(EFG) \end{aligned}$$



# General Inclusion Exclusion

$$P(E_1 \cup E_2 \cup \dots \cup E_n) = \sum_{r=1}^n (-1)^{r+1} Y_r$$

\* Where  $Y_r$  is the sum, for all combinations of  $r$  events, of the probability of the union those events.

$Y_1$  = Sum of all events on their own

$$\sum_i P(E_i)$$

$Y_2$  = Sum of all pairs of events

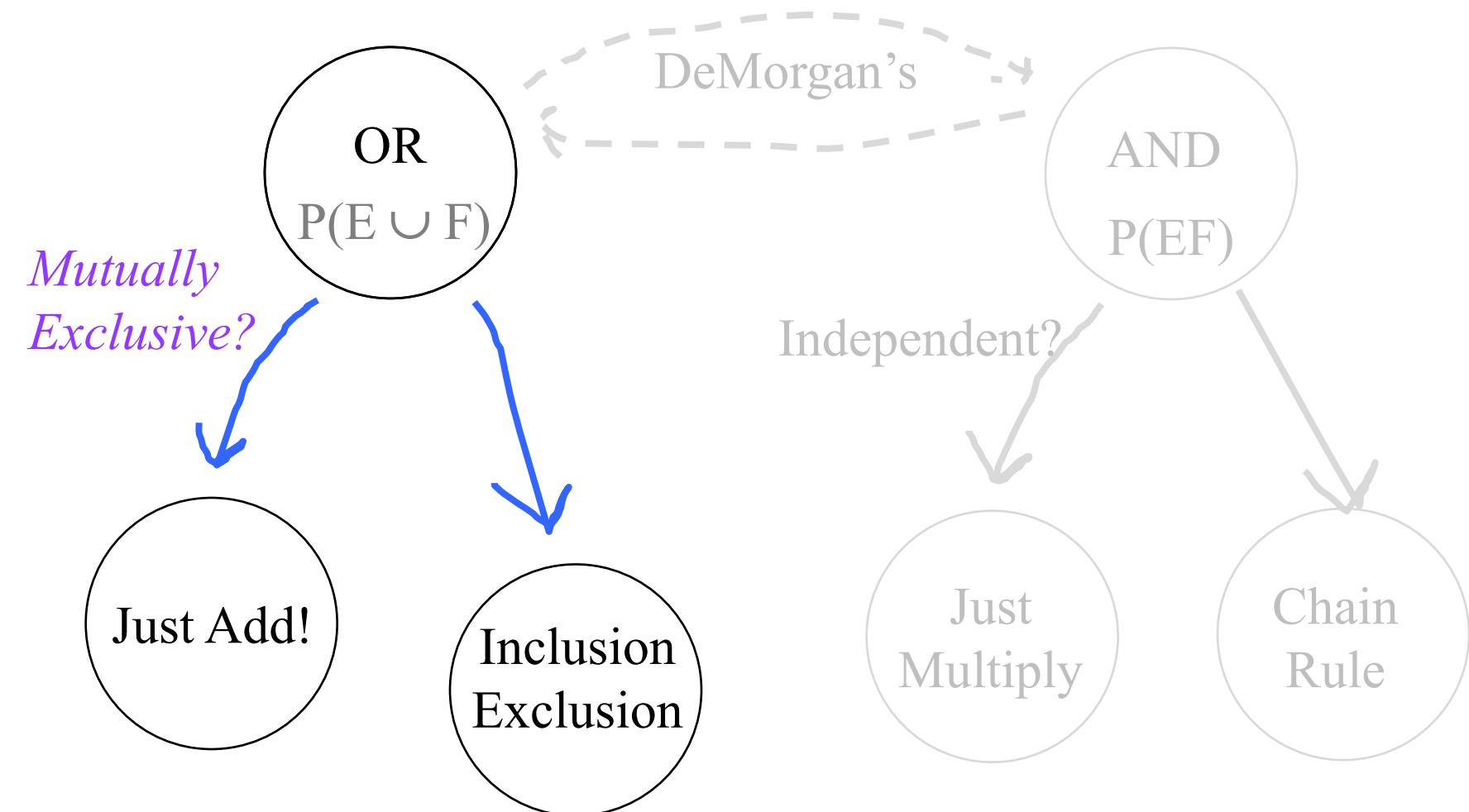
$$\sum_{i,j} P(E_i \cap E_j) \quad \text{s.t. } i \neq j$$

$Y_3$  = Sum of all triples of events

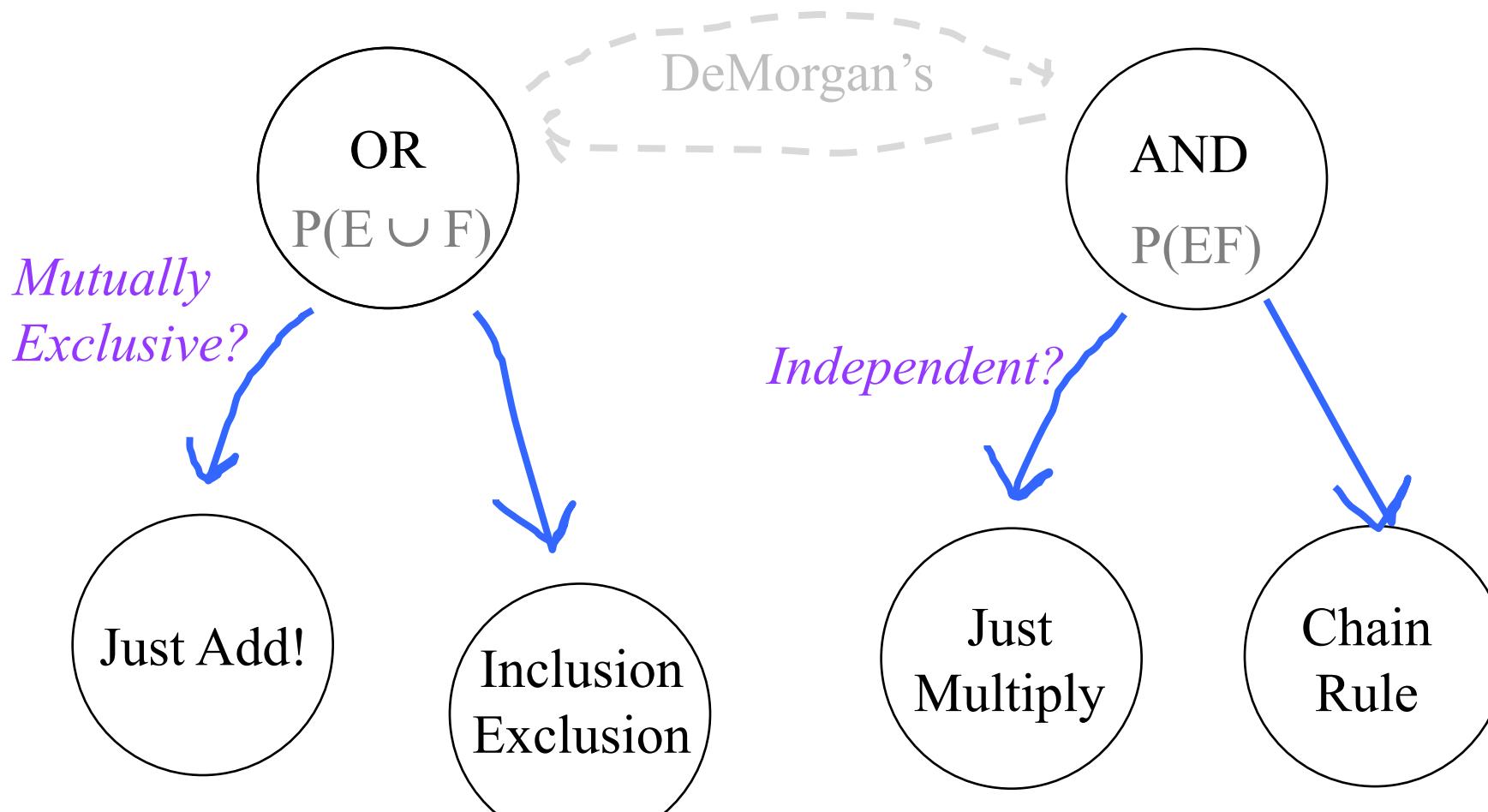
$$\sum_{i,j,k} P(E_i \cap E_j \cap E_k) \quad \text{s.t. } i \neq j, j \neq k, i \neq k$$



# Today



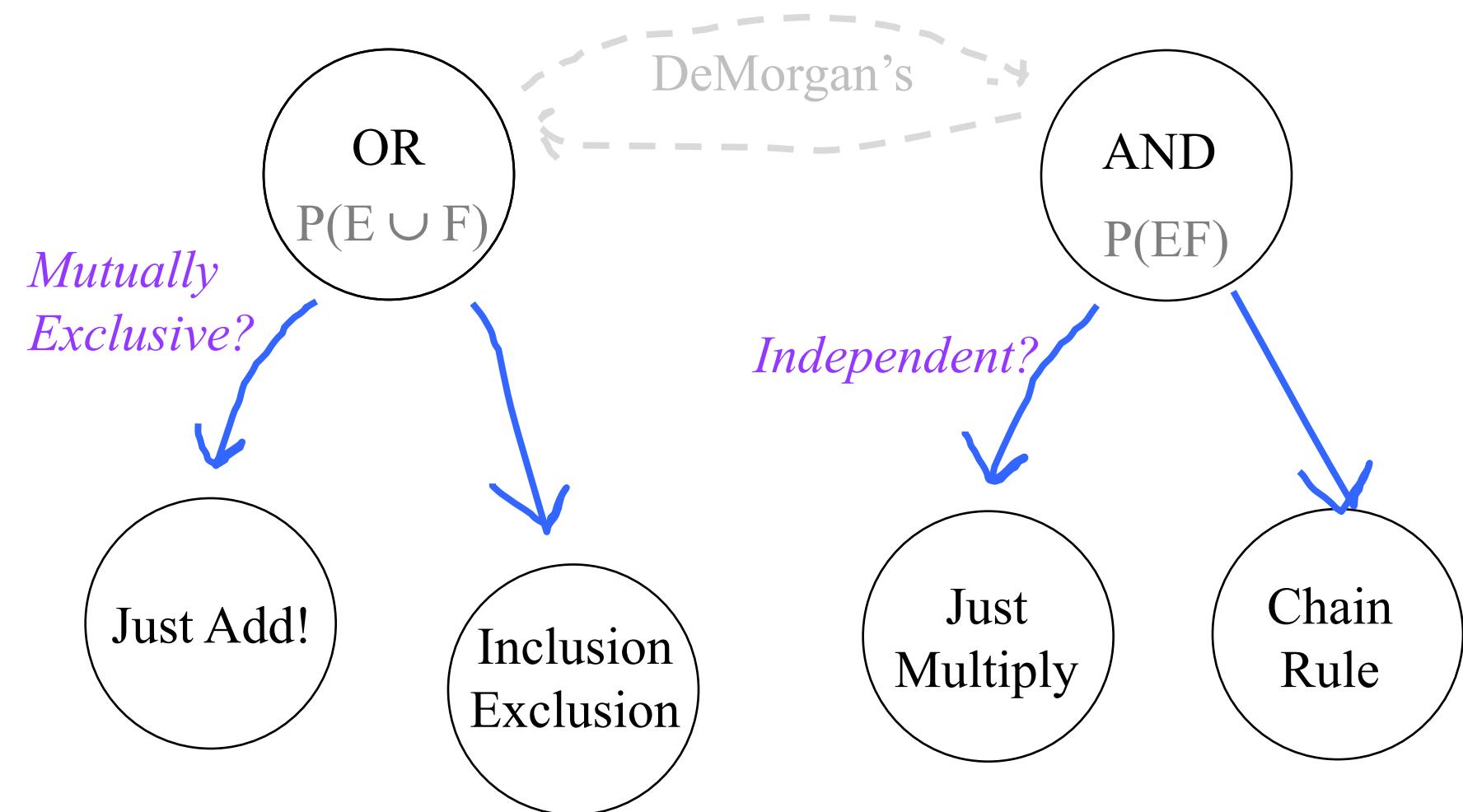
# Today



$$P(EF) = P(E|F)P(F)$$



# Today



# Probability of “AND”

We the People of the United States, in Order to form a more perfect Union, to insure domestic Tranquility, provide for the common defense, and secure the Blessings of Liberty to ourselves and our Posterity, do ordain and establish this Constitution for the United States of America.

Done, at the City of Philadelphia, on the fourth day of July, in the year of our Lord one thousand seven hundred and seventy six, and of the Independence of America, the eighteenth.

# Independence

Two events A and B are called independent if:

$$P(AB) = P(A)P(B)$$

Otherwise, they are called dependent events





If events are *independent*  
probability of AND is easy!

\*You will need to use this “trick” with high probability



# Intuition through proofs

Let A and B be independent

$$P(A|B) = \frac{P(AB)}{P(B)}$$

Definition of  
conditional probability

$$= \frac{P(A)P(B)}{P(B)}$$

Since A and B are  
independent

$$= P(A)$$

Taking the bus to  
cancel city

Knowing that event B happened, doesn't change  
our belief that A will happen.



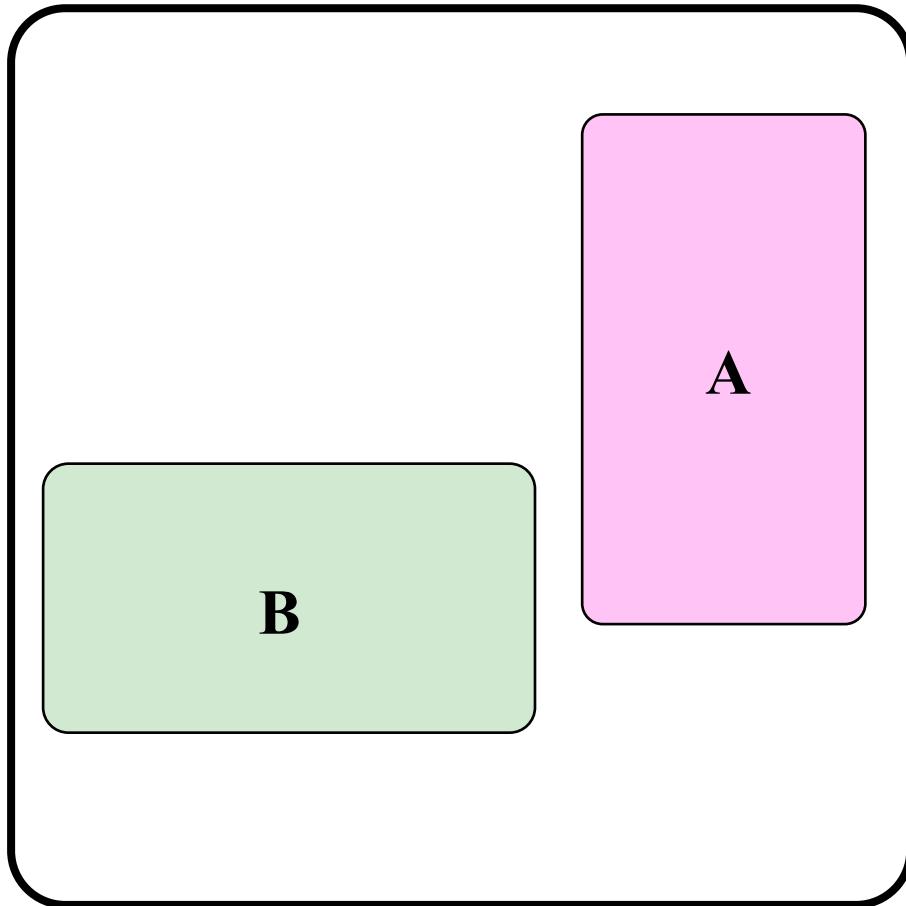
# Dice, Our Misunderstood Friends

- Roll two 6-sided dice, yielding values  $D_1$  and  $D_2$ 
  - Let E be event:  $D_1 = 1$
  - Let F be event:  $D_2 = 1$
- What is  $P(E)$ ,  $P(F)$ , and  $P(EF)$ ?
  - $P(E) = 1/6$ ,  $P(F) = 1/6$ ,  $P(EF) = 1/36$
  - $P(EF) = P(E) P(F)$   $\rightarrow$  E and F independent
- Let G be event:  $D_1 + D_2 = 5$   $\{(1, 4), (2, 3), (3, 2), (4, 1)\}$
- What is  $P(E)$ ,  $P(G)$ , and  $P(EG)$ ?
  - $P(E) = 1/6$ ,  $P(G) = 4/36 = 1/9$ ,  $P(EG) = 1/36$
  - $P(EG) \neq P(E) P(G)$   $\rightarrow$  E and G dependent



What does independence look like?

# Independence?



Independence Definition 1:

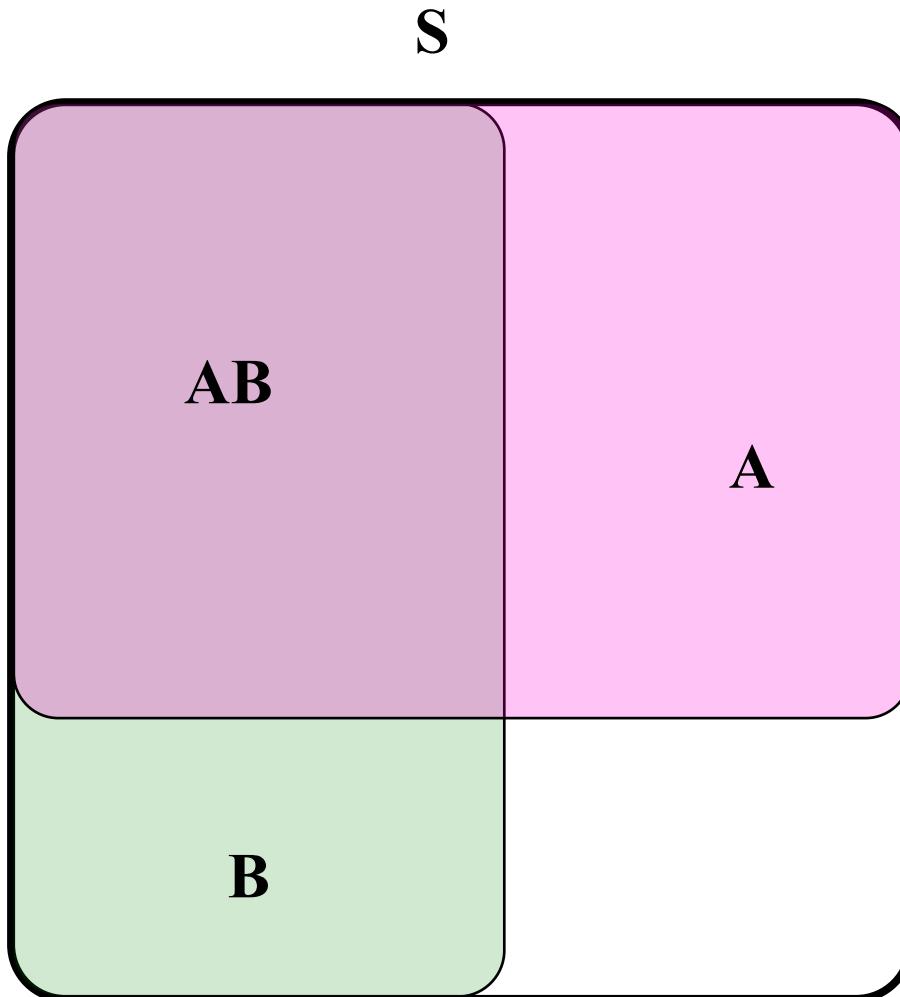
$$P(AB) = P(A)P(B)$$

$$\frac{|AB|}{|S|} = \frac{|A|}{|S|} \times \frac{|B|}{|S|}$$

**0**



# Independence



Independence Definition 1:

$$P(AB) = P(A)P(B)$$

$$\frac{|AB|}{|S|} = \frac{|A|}{|S|} \times \frac{|B|}{|S|}$$

Independence Definition 2:

$$P(A|B) = P(A)$$

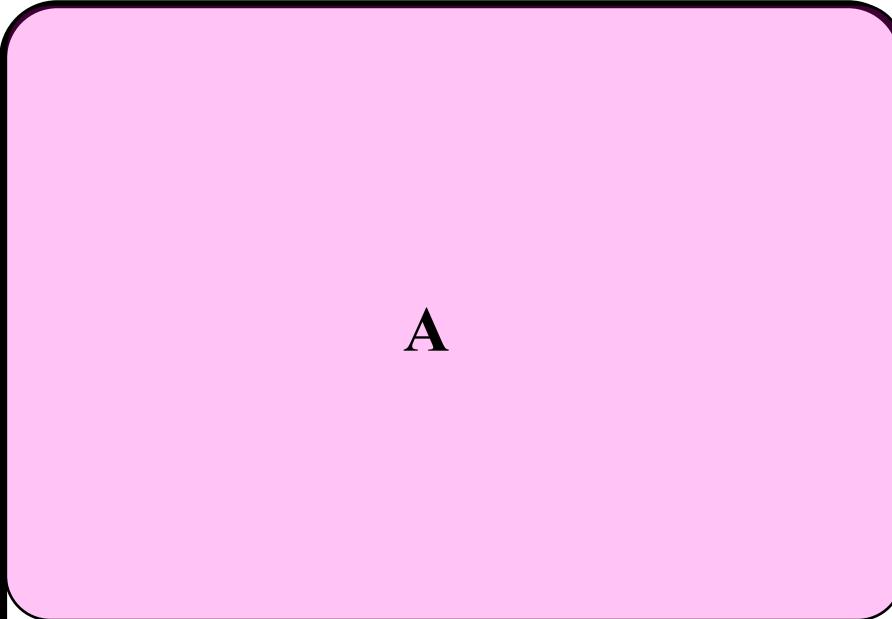
$$\frac{|AB|}{|B|} = \frac{|A|}{|S|}$$



# Independence

This ratio,  $P(A) \dots$

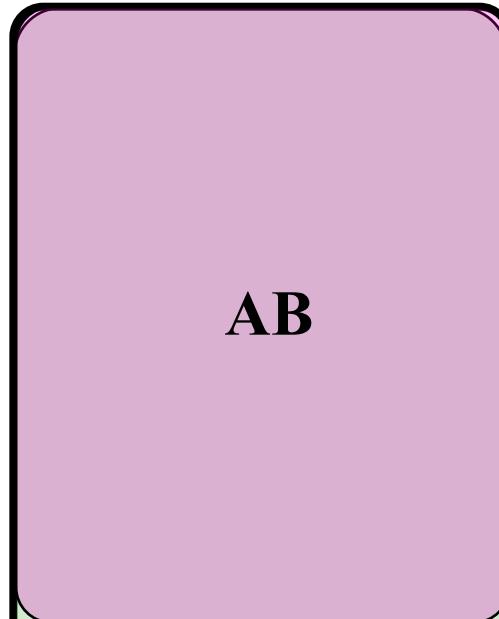
... is the same as this one,  $P(A|B)$



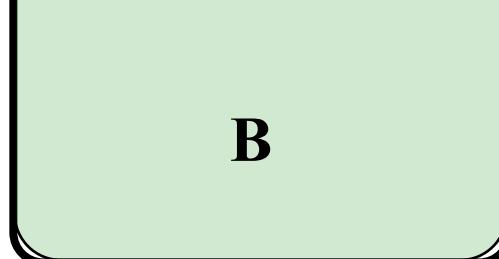
**A**



**S**



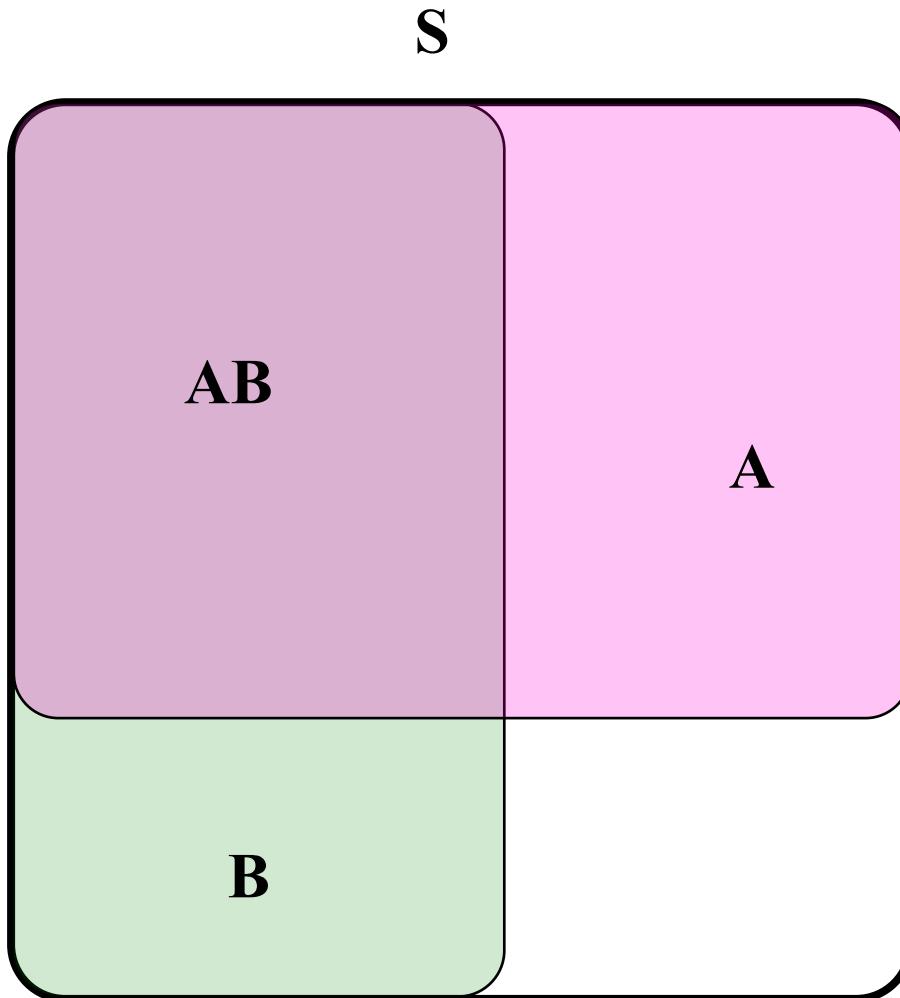
**AB**



**B**



# Independence



Independence Definition 1:

$$P(AB) = P(A)P(B)$$

$$\frac{|AB|}{|S|} = \frac{|A|}{|S|} \times \frac{|B|}{|S|}$$

Independence Definition 2:

$$P(A|B) = P(A)$$

$$\frac{|AB|}{|B|} = \frac{|A|}{|S|}$$



More Intuition through proofs:

# Independence

Given independent events A and B, prove that A and  $B^C$  are independent

We want to show that  $P(AB^C) = P(A)P(B^C)$

$$\begin{aligned} P(AB^C) &= P(A) - P(AB) && \text{By Total Law of Prob.} \\ &= P(A) - P(A)P(B) && \text{By independence} \\ &= P(A)[1 - P(B)] && \text{Factoring} \\ &= P(A)P(B^C) && \text{Since } P(B) + P(B^C) = 1 \end{aligned}$$

So if A and B are independent A and  $B^C$  are also independent



# Generalization



# Generalized Independence

- General definition of Independence:  
Events  $E_1, E_2, \dots, E_n$  are independent if **for every subset** with  $r$  elements (where  $r \leq n$ ) it holds that:

$$P(E_1, E_2, E_3, \dots, E_r) = P(E_1)P(E_2)P(E_3)\dots P(E_r)$$

- Example: outcomes of  $n$  separate flips of a coin are all independent of one another
  - Each flip in this case is called a “trial” of the experiment



# Math > Intuition



# Two Dice

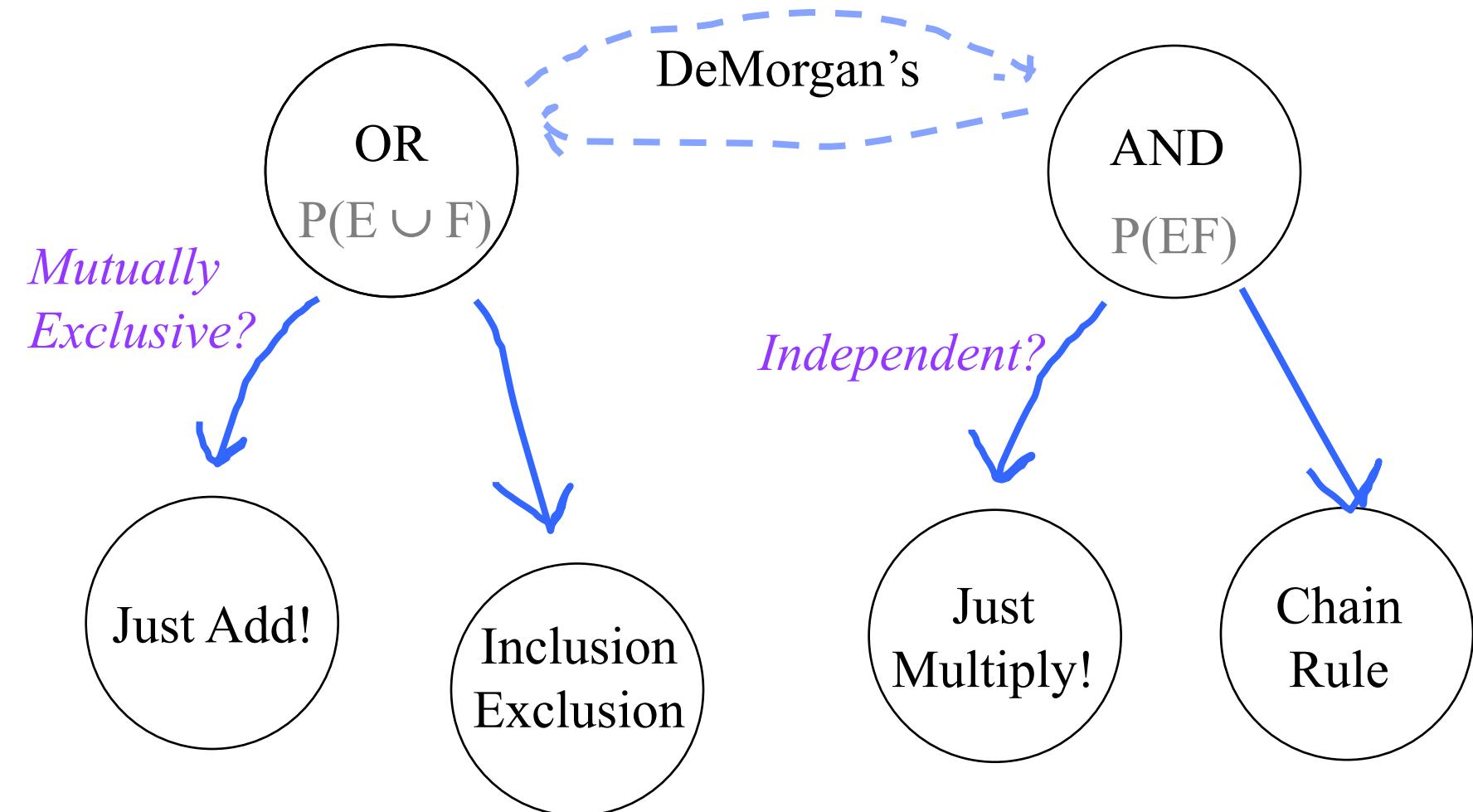
- Roll two 6-sided dice, yielding values  $D_1$  and  $D_2$ 
  - Let E be event:  $D_1 = 1$
  - Let F be event:  $D_2 = 6$
  - Are E and F independent? Yes!
- Let G be event:  $D_1 + D_2 = 7$ 
  - Are E and G independent? Yes!
  - $P(E) = 1/6, P(G) = 1/6, P(E \cap G) = 1/36$  [roll (1, 6)]
  - Are F and G independent? Yes!
  - $P(F) = 1/6, P(G) = 1/6, P(F \cap G) = 1/36$  [roll (1, 6)]
  - Are E, F and G independent? No!
  - $P(E \cap F \cap G) = 1/36 \neq 1/216 = (1/6)(1/6)(1/6)$



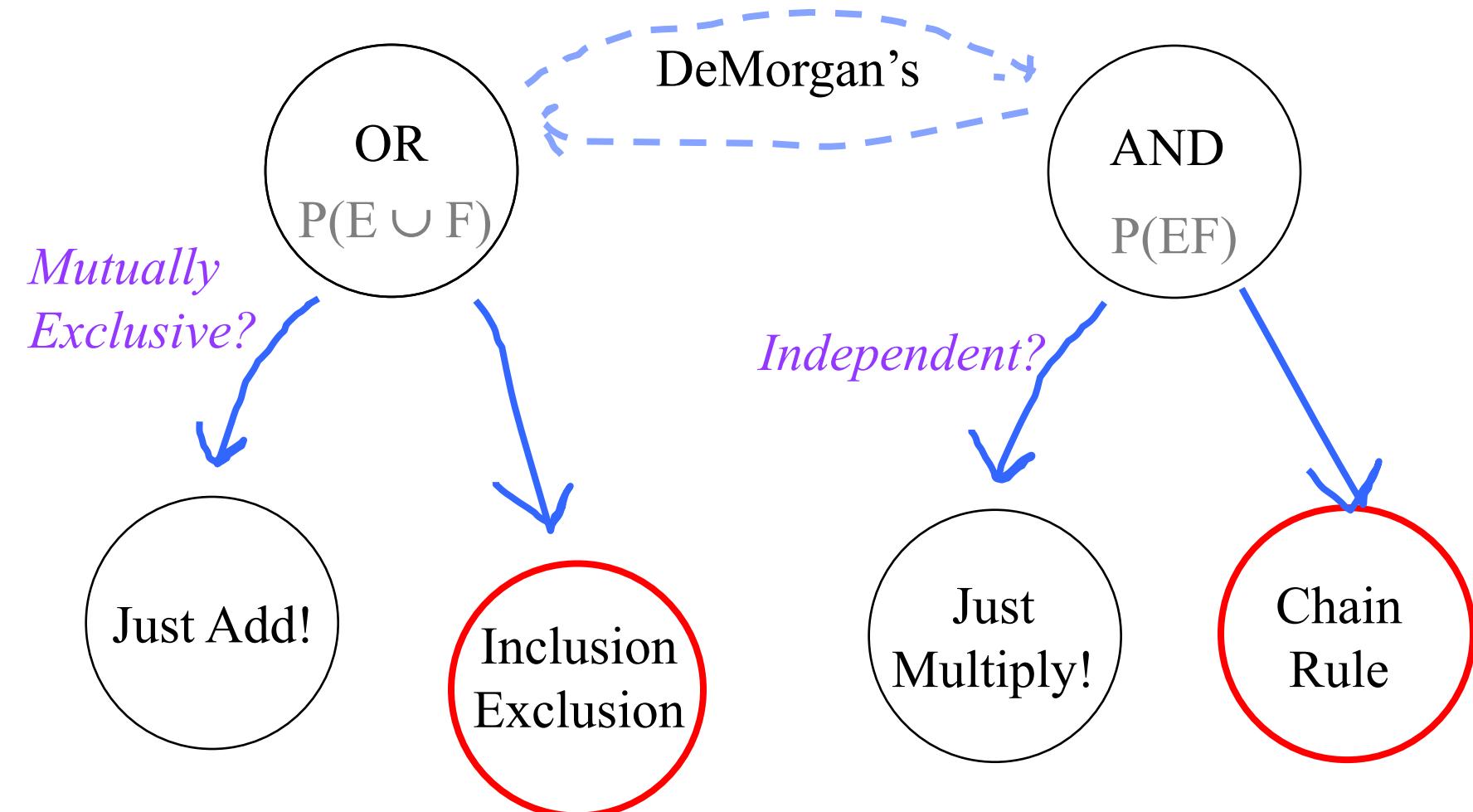
# New Ability



# Today



# Today



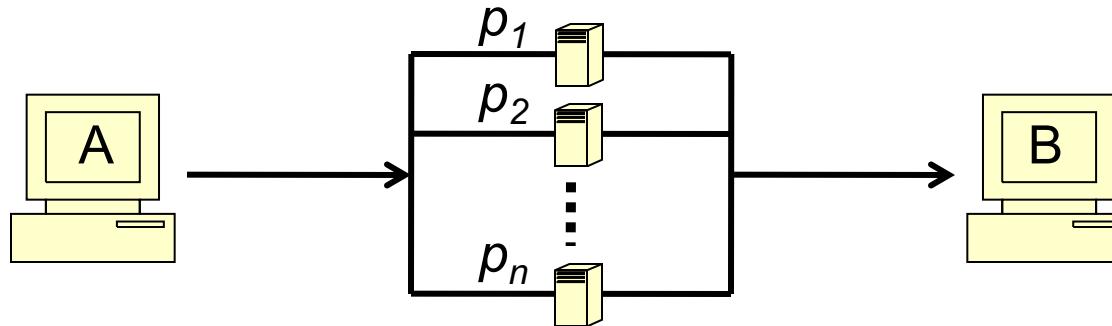


Use the two properties  
(mutual exclusion and  
independence)



# Sending a Message Through Network

- Consider the following parallel network:

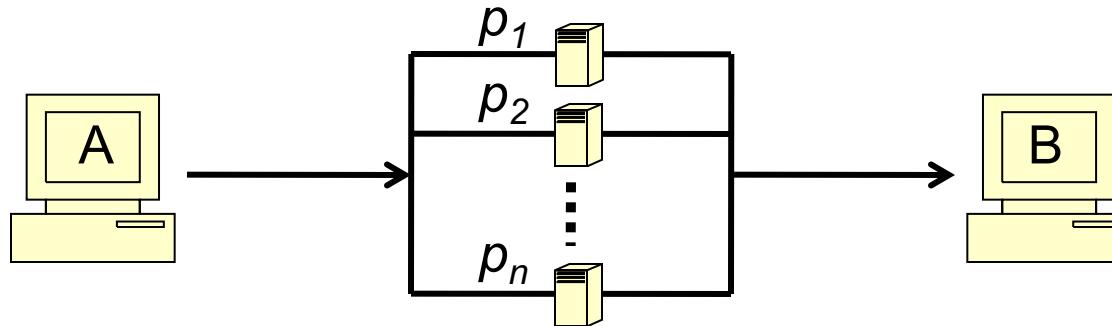


- $n$  independent routers, each with probability  $p_i$  of functioning (where  $1 \leq i \leq n$ )
- $E$  = functional path from A to B exists. What is  $P(E)$ ?



# Sending a Message Through Network

- Consider the following parallel network:

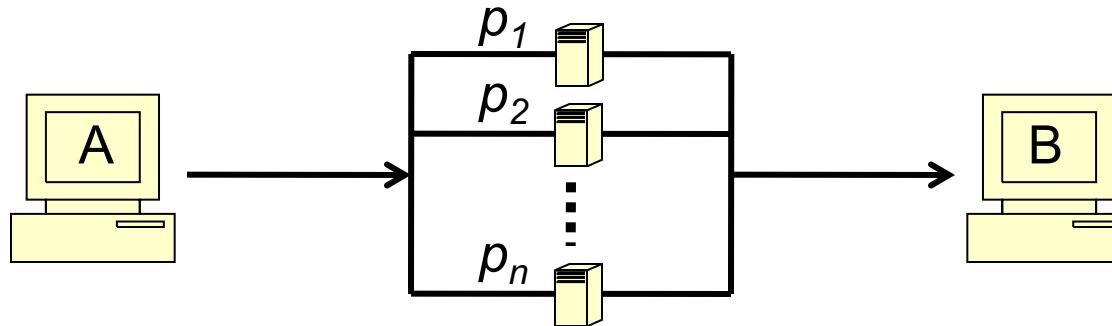


- $n$  **independent** routers, each with probability  $p_i$  of functioning (where  $1 \leq i \leq n$ )
- $E$  = functional path from A to B exists. What is  $P(E)$ ?



# Sending a Message Through Network

- Consider the following parallel network:



- $n$  **independent** routers, each with probability  $p_i$  of functioning (where  $1 \leq i \leq n$ )
- $E$  = functional path from A to B exists. What is  $P(E)$ ?

- Solution:
  - $P(E) = 1 - P(\text{all routers fail})$   
 $= 1 - (1 - p_1)(1 - p_2)\dots(1 - p_n)$   
 $= 1 - \prod_{i=1}^n (1 - p_i)$



# Coin Flips

- Say a coin comes up heads with probability  $p$ 
  - Each coin flip is an **independent** trial
- $P(n \text{ heads on } n \text{ coin flips}) = p^n$
- $P(n \text{ tails on } n \text{ coin flips}) = (1 - p)^n$
- $P(\text{first } k \text{ heads, then } n - k \text{ tails}) = p^k (1 - p)^{n-k}$
- $P(\text{exactly } k \text{ heads on } n \text{ coin flips}) = ?$



# Explain...

$P(\text{exactly } k \text{ heads on } n \text{ coin flips})?$

$$\binom{n}{k} p^k (1-p)^{n-k}$$

---

Think of the flips as ordered:

Ordering 1: T, H, H, T, T, T....

The coin flips are independent!

Ordering 2: H, T, H, T, T, T....

And so on...

$$P(F_i) = p^k (1-p)^{n-k}$$

Let's make each ordering with  $k$  heads an event...  $F_i$

---

$P(\text{exactly } k \text{ heads on } n \text{ coin flips}) = P(\text{any one of the events})$

$P(\text{exactly } k \text{ heads on } n \text{ coin flips}) = P(F_1 \text{ or } F_2 \text{ or } F_3 \dots)$

Those events are mutually exclusive!



# Hash Tables

- $m$  strings are hashed (unequally) into a hash table with  $n$  buckets
  - Each string hashed is an **independent** trial, with probability  $p_i$  of getting hashed to bucket  $i$
  - $E$  = at least one string hashed to first bucket
  - What is  $P(E)$ ?
- Solution

*To the white board*



# Hash Tables

- $m$  strings are hashed (unequally) into a hash table with  $n$  buckets
  - Each string hashed is an **independent** trial, with probability  $p_i$  of getting hashed to bucket  $i$
  - $E = \text{at least one}$  string hashed to first bucket
  - What is  $P(E)$ ?
- Solution

*To the white board*



# Yet More Hash Tables

- $m$  strings are hashed (unequally) into a hash table with  $n$  buckets
  - Each string hashed is an **independent** trial, with probability  $p_i$  of getting hashed to bucket  $i$
  - $E = \text{At least 1 of}$  buckets 1 to  $k$  has  $\geq 1$  string hashed to it
- Solution
  - $F_i = \text{at least one string hashed into } i\text{-th bucket}$
  - $P(E) = P(F_1 \cup F_2 \cup \dots \cup F_k) = 1 - P((F_1 \cup F_2 \cup \dots \cup F_k)^c)$   
 $= 1 - P(F_1^c F_2^c \dots F_k^c)$  (DeMorgan's Law)
  - $P(F_1^c F_2^c \dots F_k^c) = P(\text{no strings hashed to buckets 1 to } k)$   
 $= (1 - p_1 - p_2 - \dots - p_k)^m$
  - $P(E) = 1 - (1 - p_1 - p_2 - \dots - p_k)^m$



# No, Really, More Hash Tables

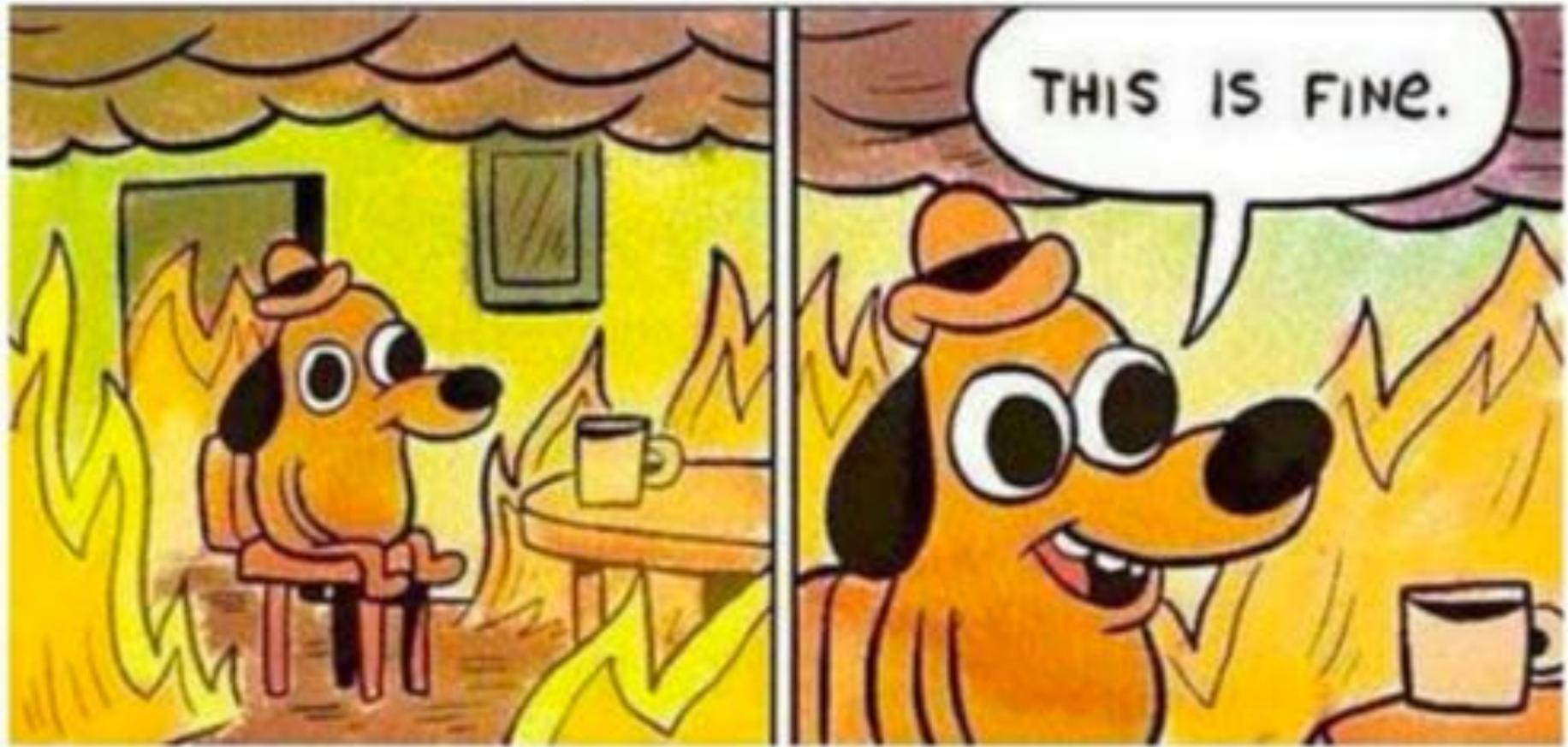
---

=

- $m$  strings are hashed (unequally) into a hash table with  $n$  buckets
  - Each string hashed is an **independent** trial, with probability  $p_i$  of getting hashed to bucket  $i$
  - $E = \text{Each of}$  buckets 1 to  $k$  has  $\geq 1$  string hashed to it



# No, Really, More Hash Tables



# No, Really, More Hash Tables

- $m$  strings are hashed (unequally) into a hash table with  $n$  buckets
  - Each string hashed is an independent trial, with probability  $p_i$  of getting hashed to bucket  $i$
  - $E = \text{Each of}$  buckets 1 to  $k$  has  $\geq 1$  string hashed to it
- Solution
  - $F_i = \text{at least one string hashed into } i\text{-th bucket}$
  - $P(E) = P(F_1 F_2 \dots F_k) = 1 - P((F_1 F_2 \dots F_k)^c)$   
 $= 1 - P(F_1^c \cup F_2^c \cup \dots \cup F_k^c)$  (DeMorgan's Law)  
 $= 1 - P\left(\bigcup_{i=1}^k F_i^c\right) = 1 - \sum_{r=1}^k (-1)^{(r+1)} \sum_{i_1 < \dots < i_r} P(F_{i_1}^c F_{i_2}^c \dots F_{i_r}^c)$

where  $P(F_{i_1}^c F_{i_2}^c \dots F_{i_r}^c) = (1 - p_{i_1} - p_{i_2} - \dots - p_{i_r})^m$



Phew!

Now two great tastes...

# NETFLIX

**And Learn**

# Netflix and Learn

What is the probability  
that a user will watch  
Life is Beautiful?

$$P(E)$$



$$P(E) = \lim_{n \rightarrow \infty} \frac{n(E)}{n} \approx \frac{\text{\#people who watched movie}}{\text{\#people on Netflix}}$$

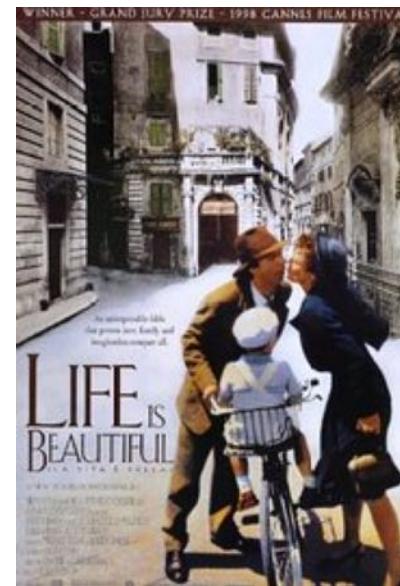
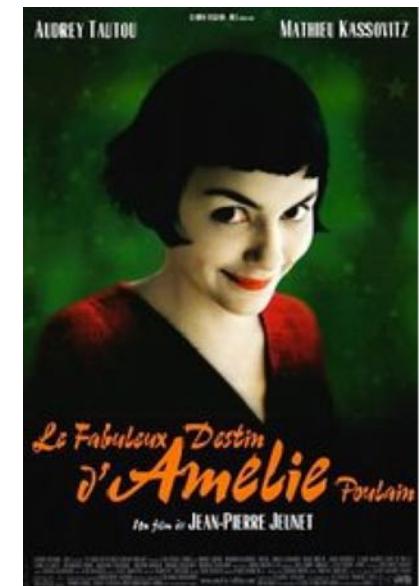
$$P(E) = 10,234,231 / 50,923,123 = 0.20$$



# Netflix and Learn

What is the probability  
that a user will watch  
Life is Beautiful, given  
they watched Amelie?

$$P(E|F)$$



$$P(E|F) = \frac{P(EF)}{P(F)} = \frac{\text{\#people who watched both}}{\text{\#people who watched } F}$$

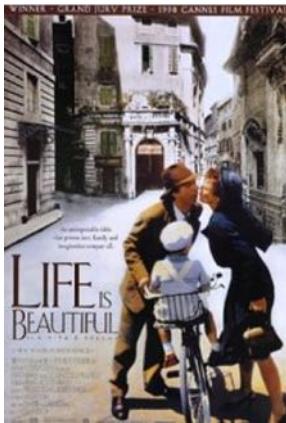
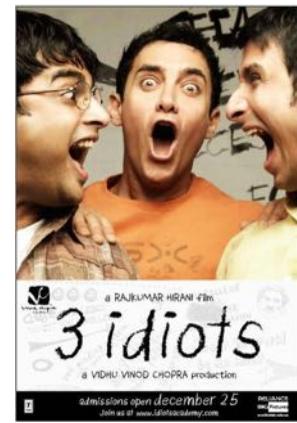
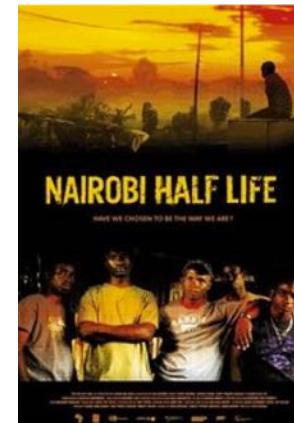
$$P(E|F) = 0.42$$



Conditioned on liking a set of movies?

# Netflix and Learn

Each event corresponds to liking a particular movie



$E_1$

$E_2$

$E_3$

$E_4$

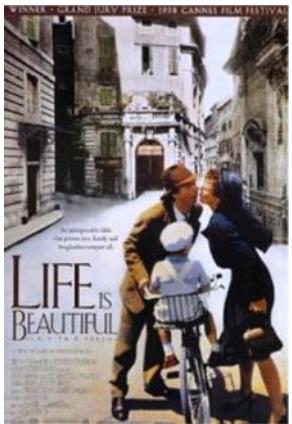
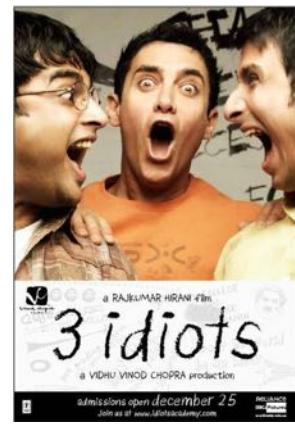
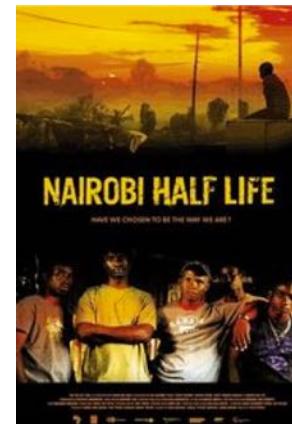
$P(E_4|E_1, E_2, E_3) ?$



Is  $E_4$  independent of  $E_1, E_2, E_3$ ?

# Netflix and Learn

Is  $E_4$  independent of  $E_1, E_2, E_3$ ?



$E_1$

$E_2$

$E_3$

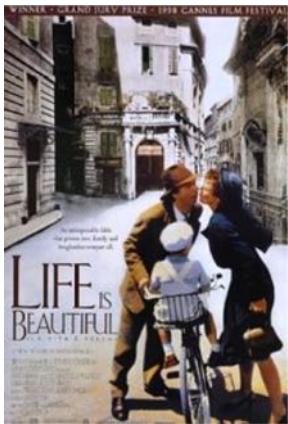
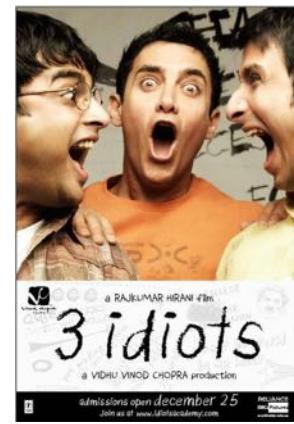
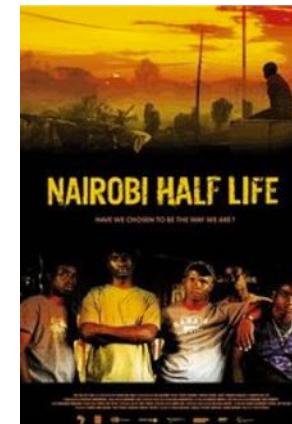
$E_4$

$$P(E_4 | E_1, E_2, E_3) \stackrel{?}{=} P(E_4)$$



# Netflix and Learn

Is  $E_4$  independent of  $E_1, E_2, E_3$ ?



$E_1$

$E_2$

$E_3$

$E_4$

$$P(E_4|E_1, E_2, E_3) = \frac{P(E_1 E_2 E_3 E_4)}{P(E_1 E_2 E_3)}$$



# Netflix and Learn

- What is the probability that a user watched four particular movies?
  - There are 13,000 titles on Netflix
  - The user watches 30 random titles
  - $E$  = movies watched include the given four.
- Solution:

$$P(E) = \frac{\binom{4}{4} \binom{12996}{24}}{\binom{13000}{30}} = 10^{-11}$$

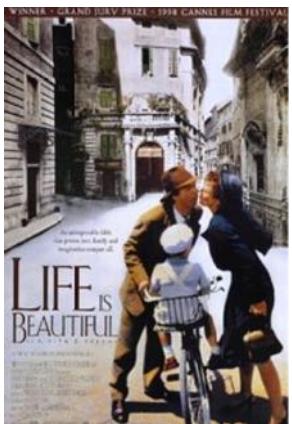
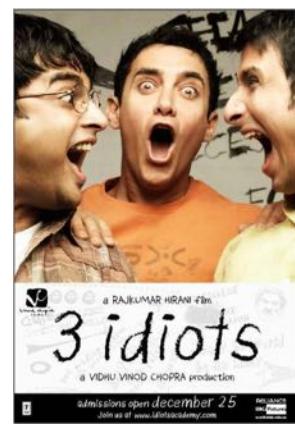
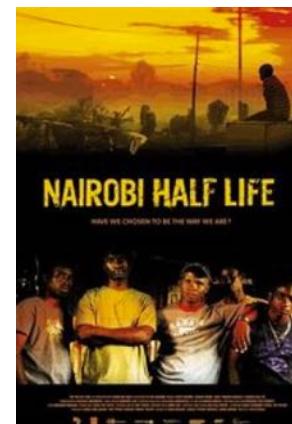
Watch those four

Choose 24 movies not in the set

Choose 30 movies from netflix



# Netflix and Learn



$E_1$

$E_2$

$E_3$

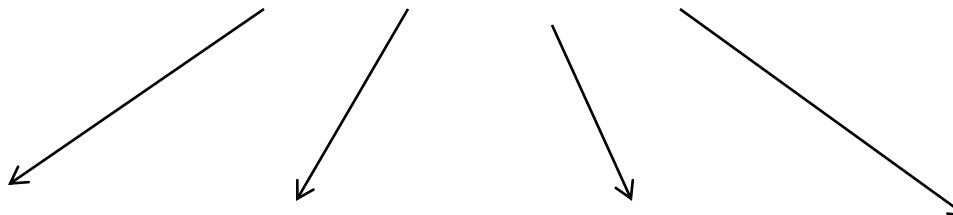
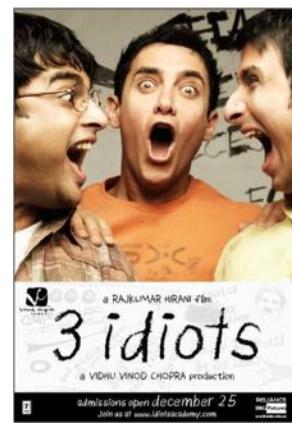
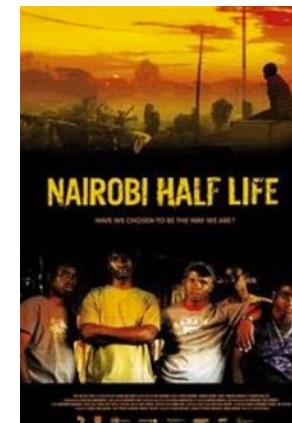
$E_4$



# Netflix and Learn

$K_1$

*Like foreign emotional comedies*



$E_1$

$E_2$

$E_3$

$E_4$

Assume  $E_1, E_2, E_3$  and  $E_4$  are conditionally independent given  $K_1$



# Netflix and Learn

$K_1$

*Like foreign emotional comedies*



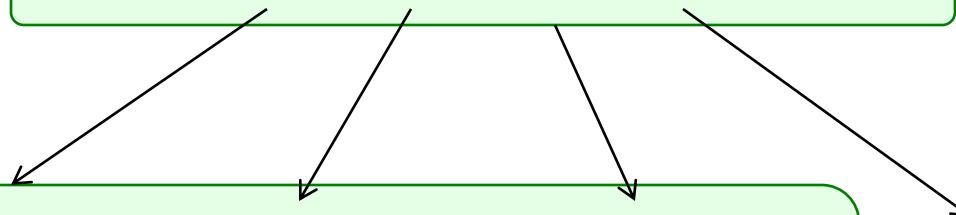
Assume  $E_1$ ,  $E_2$ ,  $E_3$  and  $E_4$  are conditionally independent given  $K_1$



# Netflix and Learn

$K_1$

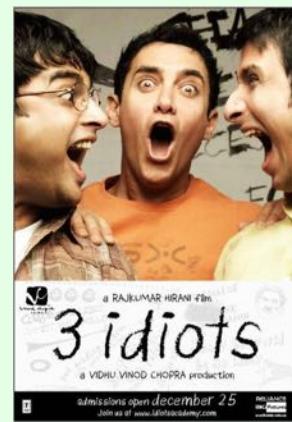
*Like foreign emotional comedies*



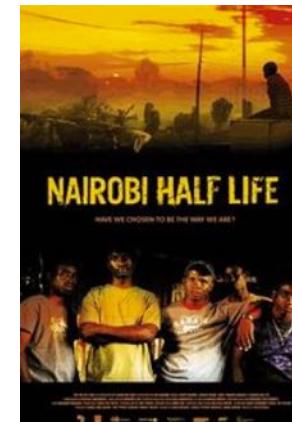
$E_1$



$E_2$

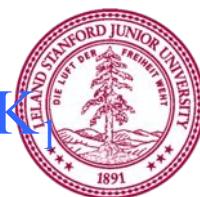


$E_3$



$E_4$

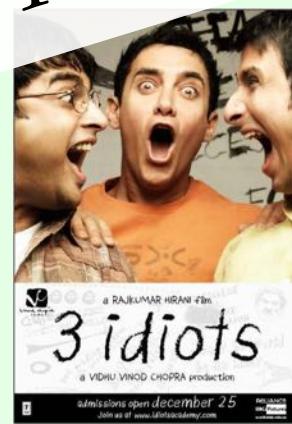
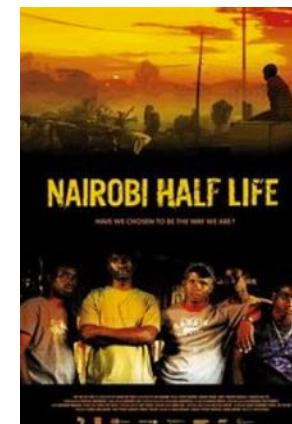
Assume  $E_1, E_2, E_3$  and  $E_4$  are conditionally independent given  $K_1$



# Netflix and Learn

$K_1$

*Like foreign emotional comedies*



$E_1$

$E_2$

$E_3$

$E_4$

Assume  $E_1, E_2, E_3$  and  $E_4$  are conditionally independent given  $K_1$



Conditional independence is a practical, real world way of decomposing hard probability questions.

# Conditional Independence



If  $E$  and  $F$  are dependent,  
that does not mean  $E$  and  $F$  will be dependent when another event happens.



# Conditional Dependence



If  $E$  and  $F$  are independent,  
that does not mean  $E$  and  $F$  will be independent when another event happens.



# Big Deal

“Exploiting conditional independence to generate fast probabilistic computations is one of the main contributions CS has made to probability theory”

-Judea Pearl wins 2011 Turing Award, “*For fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning*”



# Here we are



Source: The Hobbit



$G_1$

$G_2$

$G_3$

$G_4$

$G_5$

T

# Discovered Pattern

```
[Piech-2:DNA piech$ python findStructure.py
size data = 100000
p(G1) = 0.500
p(G2) = 0.545
p(G3) = 0.299
p(G4) = 0.701
p(G5) = 0.600
p(T) = 0.390
p(T and G1) = 0.291 , P(T)p(G1) = 0.195
p(T and G2) = 0.000 , P(T)p(G2) = 0.210
p(T and G3) = 0.116 , P(T)p(G3) = 0.117
p(T and G4) = 0.273 , P(T)p(G4) = 0.273
p(T and G5) = 0.309 , P(T)p(G5) = 0.234
T is independent of G3
T is independent of G4
G1 is independent of G2
G1 is independent of G5
T is independent of G5 | G2
```





# *Mutual exclusion And Independence*

Are two properties of events that make it easy to calculate probabilities.

